A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
The present protocol describes lipid supplementation methods in liquid and on-plate cultures for Caenorhabditis elegans, coupled with longitudinal studies and gene transcriptional analysis from bulk or a few worms and worm tissues.
Aging is a complex process characterized by progressive physiological changes resulting from both environmental and genetic contributions. Lipids are crucial in constituting structural components of cell membranes, storing energy, and as signaling molecules. Regulation of lipid metabolism and signaling is essential to activate distinct longevity pathways. The roundworm Caenorhabditis elegans is an excellent and powerful organism to dissect the contribution of lipid metabolism and signaling in longevity regulation. Multiple research studies have described how diet supplementation of specific lipid molecules can extend C. elegans lifespan; however, minor differences in the supplementation conditions can cause reproducibility issues among scientists in different labs. Here, two detailed supplementation methods for C. elegans are reported employing lipid supplementation either with bacteria seeded on plates or bacterial suspension in liquid culture. Also provided herein are the details to perform lifespan assays with lifelong lipid supplementation and qRT-PCR analysis using a whole worm lysate or dissected tissues derived from a few worms. Using a combination of longitudinal studies and transcriptional investigations upon lipid supplementation, the feeding assays provide dependable approaches to dissect how lipids influence longevity and healthy aging. This methodology can also be adapted for various nutritional screening approaches to assess changes in a subset of transcripts using either a small number of dissected tissues or a few animals.
Lipids
Lipids are small hydrophobic or amphipathic molecules soluble in organic solvents but insoluble in water1,2. Distinct lipid molecules differentiate from each other based on the number of carbons contained in their chains, location, number of double bonds, and bound structures, including glycerol or phosphates. Lipids play crucial roles within and across distinct cells to regulate organismal functions, including constituting membrane bilayers, providing energy storage, and acting as signaling molecules3,4.
Figure 1 depicts a schematic of lipid feeding using different experimental settings.
1. Preparation of lipid-conditioned bacteria
Validation of transcriptional changes using a few whole worms upon lipid supplementation
To investigate whether the protocol to extract and retrotranscribe RNA into cDNA from a few whole worms is reproducible and comparable with the data from bulk worms, a long-lived worm strain overexpressing the lysosomal acid lipase lipl-4 in the intestine was employed7,8,33,35
Lipid supplementation has been employed in aging research to elucidate the direct impact of certain lipid species on healthy aging6,7,23,26,27,31. However, the lipid supplementation procedure can be challenging, and any inconsistency between experiments can cause non-reproducible results. Here, the first detailed step-by-step.......
We thank P. Svay for maintenance support. This work was supported by NIH grants R01AG045183 (MCW), R01AT009050 (MCW), R01AG062257 (MCW), DP1DK113644 (MCW), March of Dimes Foundation (MCW), Welch Foundation (MCW), HHMI investigator (M.C.W.), and NIH T32 ES027801 pre-doctoral student fellow (M.S.). Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440).
....Name | Company | Catalog Number | Comments |
1.5 mL Pestle | Genesee Scientific | 93-165P15 | For worm grinding with Trizol |
Agarose | Sigma | A9639-500G | |
AmfiRivert cDNA Synthesis Platinum Master Mix | GenDEPOT | R5600 | For reverse transcription from bulk worm samples |
Applied Biosystems QuanStudio 3 Real-Time PCR | ThermoFisher | A28567 | For qRT-PCR |
Benchmark Scientific StripSpin 12 Microcentrifuge | Benchmark Scientific | C1248 | For spin down PCR tubes |
Branson 450 Digital Sonifier, w/ 1/8" tip | Branson Ultrasonic Corporation | 100-132-888R | |
Chloroform | Fisher Scientific | C298-500 | |
Cholesterol | Sigma | C8503-25G | |
Dimethyl sulfoxide (DMSO) | Sigma | D8418-100ML | |
Eppendorf 5424 R centrifuge | Eppendorf | 22620444R | For RNA extraction |
Eppendorf vapo protect mastercycler pro | Eppendorf | 950030010 | For reverse transcription |
Ethanol, Absolute (200 Proof) | Fisher Scientific | BP2818-500 | |
Greiner Bio-One CELLSTAR, 12 W Plate | Neta Scientific | 665180 | 12-well plates for licuid feeding |
Greiner Bio-One Petri Dish, Ps, 100 x 20 mm | Neta Scientific | 664161 | For bacterial LB plates and worm 10-cm NGM plates |
Greiner Bio-One Petri Dish, Ps, 60 x 15 mm | Neta Scientific | 628161 | For worm6-cm NGM plates |
Invitrogen nuclease-free water | ThermoFisher | AM9937 | |
Isoproanol | Sigma | PX1835-2 | |
Levamisole hydrochloride | VWR | SPCML1054 | |
lipl-4Tg | MCW Lab | N/A | Transgenic C. elegans |
lipl-4Tg;fat-3(wa22) | MCW Lab | N/A | Transgenic C. elegans |
Luria Broth Base | ThermoFisher | 12795-084 | |
Magnesium sulfate (MgSO4) | Sigma | M2643-500G | |
MicroAmp EnduraPlate Optical 96-Well Fast Clear Reaction Plate with Barcode | ThermoFisher | 4483354 | 96-well qPCR plate |
MicroAmp Optical Adhesive Film | Applied BioSystem | 4311971 | For sealing the 96-well qPCR plate |
Milli-Q Advantage A10 Water Purification System | Sigma | Z00Q0V0WW | Deionized water used to make all reagents, including buffer and cultural media, unless specified as nuclease-free water in the protocol |
N2 | Caenorhabditis Genetics Center | N/A | C. elegans wild isolate |
NanoDrop ND-1000 Spectrophotometer | ThermoFisher | N/A | For measuring RNA concentration |
OP50 | Caenorhabditis Genetics Center | N/A | Bacteria used as C. elegans food |
Potasium phosphate dibasic trihydrate (K2HPO4·3H2O) | Sigma | P5504-1KG | |
Potasium phosphate monobasic (KH2PO4) | Sigma | P0662-2.5KG | |
Power SYBR Green cells-to-Ct kit | ThermoFisher | 4402953 | For reverse transcription and qPCR from a few worms or worm tissue |
Power SYBR Green Master Mix | ThermoFisher | 4367659 | For qPCR from bulk worm samples |
Pure Bright germicidal ultra bleach | KIK International LLC. | 59647210143 | 6% house bleach For worm egg preparation |
Pyrex spot plate with nine depressions | Sigma | CLS722085-18EA | Watch glass for dissecting the worms |
RNaseZap RNase Decontamination Solution | ThermoFisher | AM9780 | |
Sodium cloride (NaCl) | Sigma | S7653-1KG | |
Sodium hydroxide (NaOH) | Sigma | SX0590-3 | |
Sodium phosphate dibasic heptahydrate (Na2HPO4·7H2O) | Sigma | S9390-1KG | |
Thermo Sorvall Legend Mach 1.6R Centrifuge | Thermo | 7500-4337 | For bacteria collection |
Thermo Sorvall ST 8 centrifuge | Thermo | 7500-7200 | For worm egg preparation |
TRIzol Reagent | TheroFisher | 15596018 | RNA extraction reagent |
Turbo DNA-free kit | ThermoFisher | AM1907 | For removing DNA contamination in RNA extractions |
Vortexer 59 | Denville Scientific INV | S7030 | |
VWR Disposable Pellet Mixers and Cordless Motor | VWR | 47747-370 | For worm grinding with Trizol |
VWR Kinetic Energy 26 Joules Mini Centrifuge C1413 V-115 | VWR | N/A | For worm collection. Discontinued model, a similar one available at VWR with Cat# 76269-064 |
Worm picker | WormStuff | 59-AWP |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved