JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Neuroscience

Using a Bipolar Electrode to Create a Temporal Lobe Epilepsy Mouse Model by Electrical Kindling of the Amygdala

Published: June 29th, 2022

DOI:

10.3791/64113

1Department of Neurosurgery, Xuanwu Hospital Capital Medical University, 2China Clinical Research Center for Epilepsy Capital Medical University, 3China Beijing Municipal Geriatric Medical Research Center

* These authors contributed equally

Abstract

The amygdala is one of the most common origins of seizures, and the amygdala mouse model is essential for the illustration of epilepsy. However, few studies have described the experimental protocol in detail. This paper illustrates the whole process of amygdala electrical kindling epilepsy model making, with the introduction of a method of bipolar electrode fabrication. This electrode can both stimulate and record, reducing brain injury caused by implanting separate electrodes for stimulation and recording. For long-term electroencephalogram (EEG) recording purposes, slip rings were used to eliminate the record interruption caused by cable tangles and falling off.

After periodic stimulation (60 Hz, 1 s every 15 min) of the basolateral amygdala (AP: 1.67 mm, L: 2.7 mm, V: 4.9 mm) for 19.83 ± 5.742 times, full kindling was observed in six mice (defined as induction of three continuous grade V episodes classified by Racine's scale). An intracranial EEG was recorded throughout the entire kindling process, and an epileptic discharge in the amygdala lasting 20-70 s was observed after kindling. Therefore, this is a robust protocol for modeling epilepsy originating from the amygdala, and the method is suitable for revealing the role of the amygdala in temporal lobe epilepsy. This research contributes to future studies on the mechanisms of mesial temporal lobe epilepsy and novel antiepileptogenic drugs.

Explore More Videos

Keywords Bipolar Electrode

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved