A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
We provide a protocol that can be generally applied to select aptamers that bind to infectious viruses only and not to viruses that have been rendered non-infectious by a disinfection method or to any other similar viruses. This opens the possibility of determining infectivity status in portable and rapid tests.
Virus infections have a major impact on society; most methods of detection have difficulties in determining whether a detected virus is infectious, causing delays in treatment and further spread of the virus. Developing new sensors that can inform on the infectability of clinical or environmental samples will meet this unmet challenge. However, very few methods can obtain sensing molecules that can recognize an intact infectious virus and differentiate it from the same virus that has been rendered non-infectious by disinfection methods. Here, we describe a protocol to select aptamers that can distinguish infectious viruses vs non-infectious viruses using systematic evolution of ligands by exponential enrichment (SELEX). We take advantage of two features of SELEX. First, SELEX can be tailor-made to remove competing targets, such as non-infectious viruses or other similar viruses, using counter selection. Additionally, the whole virus can be used as the target for SELEX, instead of, for example, a viral surface protein. Whole virus SELEX allows for the selection of aptamers that bind specifically to the native state of the virus, without the need to disrupt of the virus. This method thus allows recognition agents to be obtained based on functional differences in the surface of pathogens, which do not need to be known in advance.
Virus infections have enormous economic and societal impacts around the world, as became increasingly apparent from the recent COVID-19 pandemic. Timely and accurate diagnosis is paramount in treating viral infections while preventing the spread of viruses to healthy people. While many virus detection methods have been developed, such as PCR tests1,2 and inmunoassays3, most of the currently used methods are not capable of determining whether the detected virus is actually infectious or not. This is because the presence of components of the virus alone, such as viral nucleic acid or proteins, does not indicate that the intact, infectious virus is present, and levels of these biomarkers have shown poor correlation with infectivity4,5,6. For example, viral RNA, commonly used for the current PCR-based COVID-19 tests, has very low levels in the early stages of infection when the patient is contagious, while the RNA level is often still very high when patients have recovered from the infection and are no longer contagious7,8. The viral protein or antigen biomarkers follow a similar trend, but typically appear even later than the viral RNA and thus are even less predictive of infectability6,9. To address this limitation, some methods that can inform on the infectivity status of the virus have been developed, but are based on cell culture microbiology techniques that require a long time (days or weeks) to obtain results4,10. Thus, developing new sensors that can inform on the infectability of clinical or environmental samples can avoid delays in treatment and further spread of the virus. However, very few methods can obtain sensing molecules that can recognize an intact infectious virion and differentiate it from the same virus that has been rendered non-infectious.
In this context, aptamers are particularly well-suited as a unique biomolecular tool11,12,13,14. Aptamers are short, single-stranded DNA or RNA molecules with a specific nucleotide sequence that allows them to form a specific 3D conformation to recognize a target with high affinity and selectivity15,16. They are obtained by a combinatorial selection process called systematic evolution of ligands by exponential enrichment (SELEX), also known as in vitro selection, that is carried out in test tubes with a large random DNA sampling library of 1014-1015 sequences17,18,19. In each round of this iterative process, the DNA pool is first subjected to a selection pressure through incubation with the target under the desired conditions. Any sequences that are not bound to the target are then removed, leaving behind only those few sequences that are able to bind under the given conditions. Finally, the sequences that have been selected in the previous step are amplified by PCR, enriching the population of the pool with the desired functional sequences for the next round of selection, and the process is repeated. When the activity of the selection pool reaches a plateau (typically after 8-15 rounds), the library is analyzed by DNA sequencing to identify the winning sequences exhibiting the highest affinity.
SELEX has unique advantages that can be exploited to gain increased selectivity against other similar targets20,21, such as for infectivity status of the virus22. First, a wide variety of different types of targets can be used for the selection, from small molecules and proteins to whole pathogens and cells16. Thus, to obtain an aptamer that binds to an infectious virus, an intact virus can be used as the target, instead of a viral surface protein19. Whole virus SELEX allows for the selection of aptamers that bind specifically to the native state of the virus, without the need for disruption of the virus. Second, SELEX can be tailor-made to remove competing targets21,23, such as other similar viruses or non-infectious inactivated viruses, using counter selection steps in each round of selection22. During the counter selection steps, the DNA pool is exposed to targets for which binding is not desired, and any sequences that bind are discarded.
In this work, we provide a protocol that can be generally applied for selecting aptamers that bind to an infectious virus but not to the same virus that has been rendered non-infectious by a particular disinfection method or to another related viruses. This method allows recognition agents to be obtained based on functional differences of the virus surface, which do not need to be known in advance, and so offers an additional advantage for the detection of newly emerged pathogens or for understudied diseases.
1. Preparation of reagents and buffers
2. Design and synthesis of DNA library and primers
3. Infectious and non-infectious virus samples
CAUTION: The infectious and non-infectious virus samples are biosafety level 2 (BSL2) samples that require extra care to handle safely and appropriately. All steps of the procedure that include these samples must be performed in a biosafety cabinet, or the virus solution must be in a sealed container (e.g., capped plastic tubes).
4. In vitro selection or SELEX process: initial round
NOTE: For all the steps using the infectious virus, work in a BSL2 cabinet.
5. Subsequent selection rounds
6. Monitoring the SELEX process
NOTE: To monitor the enrichment of the pool, qPCR is used in two ways. First, by absolute quantification, it is possible to test the enrichment of the pools (elution yield). Second, by monitoring the melting curve, the diversity of the pools (convergence of the aptamer species) can be evaluated30.
7. High-throughput sequencing
8. Sequencing analysis
9. Aptamer binding validation and assays
Since DNA aptamers can be obtained using SELEX in a test tube15, this SELEX strategy was carefully designed to include both positive selection steps toward the intact, whole infectious virus (i.e., retain the DNA molecules that bind to the infectious virus), as well as counter selection steps for the same virus that has been rendered non-infectious by a particular disinfection method, specifically UV-treatment, by discarding the DNA sequences that can bind to the non-infectious virus. A schematic ...
SELEX allows not only the identification of aptamers with high affinity, in the pM-nM range22,43,44,45, but also with high and tunable selectivity. By taking advantage of counter selection, aptamers with challenging selectivity can be obtained. For instance, the Li group has demonstrated the ability to obtain sequences that can differentiate pathogenic bacterial strains from non-pathogenic stra...
The authors have nothing to disclose.
We wish to thank Ms. Laura M. Cooper and Dr. Lijun Rong from the University of Illinois at Chicago for providing the pseudovirus samples used in this protocol (SARS-CoV-2, SARS-CoV-1, H5N1), as well as Dr. Alvaro Hernandez and Dr. Chris Wright of the DNA Services facility of the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-Champaign for their assistance with high-throughput sequencing, and many members of the Lu group who have helped us with in vitro selection and aptamer characterization techniques. This work was supported by a RAPID grant from the National Science Foundation (CBET 20-29215) and a seed grant from the Institute for Sustainability, Energy, and Environment at the University of Illinois at Urbana-Champaign and Illinois-JITRI Institute (JITRI 23965). A.S.P. thanks the PEW Latin American Fellowship for financial support. We also thank the Robert A. Welch Foundation (Grant F-0020) for support of the Lu group research program at the University of Texas at Austin.
Name | Company | Catalog Number | Comments |
10% Ammonium persulfate (APS) | BioRad | 1610700 | |
100% Ethanol | Sigma-Aldrich | E7023 | |
1x PBS without calcium & magnesium | Corning | 21-040-CM | |
40% acrylamide/bisacrylamide (29:1) solution | BioRad | 1610146 | |
Agencourt AMPure XP Beads | Beckman Coulter | A63880 | DNA clean-up beads - Section 7.2.2 |
Amicon Ultra-0.5 Centrifugal Filter Unit | Merck | UFC501024 | cut-off 10 kDa |
Amicon Ultra-0.5 Centrifugal Filter Unit | Merck | UFC510024 | cut-off 100 kDa |
Boric Acid | Sigma-Aldrich | 100165 | |
C1000 Touch Thermal Cycler with Dual 48/48 Fast Reaction Module | BioRad | 1851148 | |
Calcium Chloride | Sigma-Aldrich | C4901 | |
CFX Connect Real-Time PCR Detection System | BioRad | 1855201 | |
Digital Dry Baths/Block Heaters | Thermo Scientific | 88870001 | |
Dynabeads MyOne Streptavidin C1 | Thermo Fisher | 65001 | streptavidin-modified magnetic beads - Section 4.9 |
EDTA disodium salt | Sigma-Aldrich | 324503 | |
Eppendorf Safe-Lock microcentrifuge tubes | Sigma-Aldrich | T9661 | 1.5 mL |
Lenti-X p24 Rapid Titer Kit | Takara Bio USA, Inc. | 632200 | Lentivirus quantification kit - Section 3.3.2.1 |
MagJET Separation Rack, 12 x 1.5 mL tube | Thermo Scientific | MR02 | |
Magnesium chloride | Sigma-Aldrich | M8266 | |
Microseal 'B' PCR Plate Sealing Film, adhesive, optical | BioRad | MSB1001 | non-UV absorbing |
Mini-PROTEAN Tetra Cell for Ready Gel Precast Gels | BioRad | 1658004EDU | |
Mini-PROTEAN Short Plates | BioRad | 1653308 | |
Mini-PROTEAN Spacer Plates with 0.75 mm Integrated Spacers | BioRad | 1653310 | |
Molecular Biology Grade Water | Lonza | 51200 | |
Multiplate 96-Well PCR Plates, high profile, unskirted, clear | BioRad | MLP9611 | |
Nanodrop One | Thermo Scientific | ND-ONE-W | |
OneTaq DNA Polymerase | New England BioLab | M0480S | |
Ovation Ultralow v2 + UDI | Tecan | 0344NB-A01 | High-troughput sequencing library preparation kit - Section 7.2. |
PIPETMAN G (100-1000 µL, 20-200 µL, 2-20 µL and 0.2-2 µL) | Gilson | F144059M, F144058M, F144056M, F144054M | |
Purifier Logic+ Class II, Type A2 Biosafety Cabinets | Labconco | 4261 | |
Qubit dsDNA BR Assay Kit | Invitrogen | Q32850 | fluorescence-based dsDNA quantification kit - Section 7.2.3 |
SHARP Classic Low Retention Pipet Tips (10 uL, 200 uL, 1000 uL) | Thomas Scientific | 1158U43, 1159M44, 1158U40 | |
Sodium acetate | Sigma-Aldrich | S2889 | |
Sodium chloride | Sigma-Aldrich | S7653 | |
Sorvall Legend Micro 17R Microcentrifuge | Thermo Scientific | 75002440 | |
SsoFast EvaGreen Supermix | BioRad | 1725201 | qPCR mastermix - Section 6.2. |
Tris(hydroxymethyl)aminomethane | Sigma-Aldrich | T1503 | |
Tubes and Ultra Clear Caps, strips of 8 | USA scientific | AB1183 | PCR tubes |
Urea | Sigma-Aldrich | U5128 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved