A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a method combining immunomagnetic beads and fluorescence-activated cell sorting to isolate and analyze defined immune cell subpopulations of peripheral blood mononuclear cells (monocytes, CD4+ T cells, CD8+ T cells, B cells, and natural killer cells). Using this method, magnetic and fluorescently labeled cells can be purified and analyzed.
Infectious mononucleosis (IM) is an acute syndrome mostly associated with primary Epstein–Barr virus (EBV) infection. The main clinical symptoms include irregular fever, lymphadenopathy, and significantly increased lymphocytes in peripheral blood. The pathogenic mechanism of IM is still unclear; there is no effective treatment method for it, with mainly symptomatic therapies being available. The main question in EBV immunobiology is why only a small subset of infected individuals shows severe clinical symptoms and even develop EBV-associated malignancies, whilemost individuals are asymptomatic for life with the virus.
B cells are first involved in IM because EBV receptors are presented on their surface. Natural killer (NK) cells are cytotoxic innate lymphocytes that are important for killing EBV-infected cells. The proportion of CD4+ T cells decreases while that of CD8+ T cells expands dramatically during acute EBV infection, and the persistence of CD8+ T cells is important for lifelong control of IM. Those immune cells play important roles in IM, and their functions need to be identified separately. For this purpose, monocytes are separated first from peripheral blood mononuclear cells (PBMCs) of IM individuals using CD14 microbeads, a column, and a magnetic separator.
The remaining PBMCs are stained with peridinin-chlorophyll-protein (PerCP)/Cyanine 5.5 anti-CD3, allophycocyanin (APC)/Cyanine 7 anti-CD4, phycoerythrin (PE) anti-CD8, fluorescein isothiocyanate (FITC) anti-CD19, APC anti-CD56, and APC anti-CD16 antibodies to sort CD4+ T cells, CD8+ T cells, B cells, and NK cells using a flow cytometer. Furthermore, transcriptome sequencing of five subpopulations was performed to explore their functions and pathogenic mechanisms in IM.
Epstein–Barr virus (EBV), a γ-herpesvirus also known as human herpes virus type 4, is ubiquitous in the human population and establishes lifelong latent infection in more than 90% of the adult population1. Most EBV primary infection occurs during childhood and adolescence, with a fraction of patients manifesting with infectious mononucleosis (IM)2, showing characteristic immunopathology, including an activated immune response with CD8+ T cells in blood and a transient proliferation of EBV-infected B cells in the oropharynx3. The course of IM may last for 2–6 weeks and the majority of the patients recover well4. However, some individuals develop persistent or recurrent IM-like symptoms with high morbidity and mortality, which is classified as chronic active EBV infection (CAEBV)5. In addition, EBV is an important oncogenic virus, which is closely related to a variety of malignancies, including epithelioid and lymphoid malignancies such asnasopharyngeal carcinoma, Burkitt's lymphoma, Hodgkin's lymphoma (HL), and T/NK cell lymphoma6. Although EBV has been studied for over 50 years, its pathogenesis and the mechanism by which it induces the proliferation of lymphocytes have not been fully elucidated.
Several studies have investigated the molecular signatures for the immunopathology of EBV infection by transcriptome sequencing. Zhong et al. analyzed whole-transcriptome profiling of peripheral blood mononuclear cells (PBMCs) from Chinese children with IM or CAEBV to find that CD8+ T cell expansion was predominantly found in the IM group7, suggesting that CD8+ T cells may play a major role in IM. Similarly, another study found lower proportions of EBV-specific cytotoxic T and CD19+ B cells and higher percentages of CD8+ T cells in patients with IM caused by primary EBV infection than in patients with IM caused both by EBV reactivation and other agents8. B cells are first involved in IM because EBV receptors are presented on their surface. Al Tabaa et al. found that B cells were polyclonally activated and differentiated intoplasmablasts (CD19+, CD27+ and CD20−, and CD138− cells) and plasma cells (CD19+, CD27+ and CD20−, and CD138+) during IM9. Moreover, Zhong et al. found that monocyte markers CD14 and CD64 were upregulated in CAEBV, suggesting that monocytes may play an important role in the cellular immune response of CAEBV through antibody-dependent cellular cytotoxicity (ADCC) and hyperactive phagocytosis7. Alka et al. characterized the transcriptome of MACS sorted CD56dim CD16+ NK cells from four patients of IM or HL and found that NK cells from both IM and HL had downregulated innate immunity and chemokine signaling genes, which could be responsible for the hyporesponsiveness of NK cells10. In addition, Greenough et al. analyzed gene expression of sorted CD8+ T cells from 10 PBMCs of individuals with IM. They reported that a large proportion of CD8+ T cells in IM were virus-specific, activated, dividing, and primed to exert effector activities11. Both T cell-mediated, EBV-specific responses, and NK cell-mediated, nonspecific responses play essential roles during primary EBV infection. However, these studies only investigated the transcriptome results of the diverse mixture of immune cells or only a certain subpopulation of lymphocytes, which is not sufficient for the comprehensive comparison of the molecular characteristics and functions of different immune cell subpopulations in children with IM at the same disease state.
This paper describes a method that combines immunomagnetic beads and fluorescence-activated cell sorting (FACS) to isolate and analyze defined immune cell subpopulations of PBMCs (monocytes, CD4+ T cells, CD8+ T cells, B cells, and NK cells). Using this method, magnetic and fluorescently labeled cells can be purified using a magnetic separator and FACS or analyzed by flow cytometry. RNA can be extracted from the purified cells for transcriptome sequencing. This method will enable the characterization and gene expression of different immune cells in the same states of disease of individuals with IM, which will expand our understanding of the immunopathology of EBV infection.
Blood samples were obtained from patients with IM (n = 3), healthy EBV carriers (n = 3), and EBV-uninfected children (n = 3). Volunteers were recruited from Beijing Children's Hospital, Capital Medical University, and all studies were ethically approved. Ethical approval was obtained by the Ethics Committee of Beijing Children's Hospital, Capital Medical University (Approval Number: [2021]-E-056-Y). Informed consent of patients was waived as the study only used the remaining samples for clinical testing. All data were fully deidentified and anonymized to protect patient privacy.
1. Isolation of PBMCs from peripheral blood
2. Isolation of CD14 + monocytes from PBMCs using CD14 microbeads
3. Separation of lymphocyte populations from PBMCs by fluorescently labeled antibody staining and FACS
4. Flow cytometry parameter setting
5. Cell sorting and collecting data via flow cytometry
Reference of the gating strategy
The gating strategy used to sort the four lymphocyte subpopulations is shown in Figure 1. Briefly, lymphocytes are selected (P1) on a dot plot showing the granulosity (SSC-A) versus size (FSC-A). Then, single cells are selected (P2) on a dot plot showing the size (FSC-A) versus forward scatter (FSC-H), while doublet cells are excluded. CD3+ T cells (P3) and CD19+ B cells (Figure 1B) ar...
This protocol represents an efficient way to sort peripheral blood immune cell subpopulations. In this study, venous blood samples from patients with IM, healthy EBV carriers, and EBV-uninfected children were selected as the research objective. This work using the peripheral blood of patients of IM mainly focuses on analyzing and determining the proportions of different cell subsets through multi-color flow cytometry. Transcriptome sequencing is mainly used for the detection and analysis of a certain subpopulation of lym...
The authors declare no conflicts of interest.
This work was supported by the National Natural Science Foundation of China (82002130), Beijing Natural Science Foundation (7222059) and the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-026).
Name | Company | Catalog Number | Comments |
APC anti-human CD16 | Biolegend | 302012 | Fluorescent antibody |
APC anti-human CD56 (NCAM) | Biolegend | 362504 | Fluorescent antibody |
APC/Cyanine7 anti-human CD4 | Biolegend | 344616 | Fluorescent antibody |
Automated cell counter | BIO RAD | TC20 | Cell count |
BD FACSAria fluorescence-activated flow cell sorter-cytometer (BD FACSAria II) | Becton, Dickinson and Company | 644832 | Cell sort |
CD14 MicroBeads, human | Miltenyi Biotec | 130-050-201 | microbeads |
Cell ctng slides | BIO RAD | 1450016 | Cell count |
Centrifuge tubes | Falcon | 35209715 | 15 mL centrifuge tube |
EDTA (≥99%, BioPremium) | Beyotime | ST1303 | EDTA |
Ethylene diamine tetra acetic acid (EDTA) anticoagulant tubes | Becton, Dickinson and Company | 367862 | EDTA anticoagulant tubes |
FITC anti-human CD19 | Biolegend | 302206 | Fluorescent antibody |
Gibco Fetal Bovine Serum | Thermo Fisher Scientific | 16000-044 | Fetal Bovine Serum |
High-speed centrifuge | Sigma | 3K15 | Cell centrifugation for 15 mL centrifuge tube |
High-speed centrifuge | Eppendorf | 5424R | Cell centrifugation for 1.5 mL Eppendorf (EP) tube |
Human lymphocyte separation medium | Dakewe | DKW-KLSH-0100 | Ficoll-Paque |
LS Separation columns | Miltenyi Biotec | 130-042-401 | Separation columns |
Microcentrifuge tubes | Axygen | MCT-150-C | 1.5 mL microcentrifuge tube |
MidiMACS Separator | Miltenyi Biotec | 130-042-302 | Magnetic bead separator |
PE anti-human CD8 | Biolegend | 344706 | Fluorescent antibody |
PerCP/Cyanine5.5 anti-human CD3 | Biolegend | 344808 | Fluorescent antibody |
Phosphate Buffered Saline (PBS) | BI | 02-024-1ACS | PBS |
Polystyrene round bottom tubes | Falcon | 352235 | 5 mL tube for FACS flow cytometer |
TRIzol reagent | Ambion | 15596024 | Lyse cells for RNA extraction |
Trypan Blue Staining Cell Viability Assay Kit | Beyotime | C0011 | Trypan Blue Staining |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved