Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol developed a method to estimate the yield of compounds on the TLC plate using the blue-LED illumination technique. The advantages of this approach are that it is safe, effective, inexpensive, and allows the researcher to measure multiple samples simultaneously.

Abstract

Thin-layer chromatography (TLC) is an accessible analytical technique that has been extensively used in organic chemistry research to quantify the yield of unknown samples. The present study developed an effective, cheap, and safe method to estimate the yield of samples on a TLC plate using the blue-LED illuminator. Lovastatin extracted from Aspergillus terreus was the example compound used in the present study. Regression models based on the lovastatin standard were used to evaluate the yield of lovastatin. Three methods were compared: bioassay, UV detection, and blue-LED illumination. The result showed that the blue-LED illumination method is significantly more time-effective than UV detection and bioassay methods. Additionally, the blue-LED illumination was a relatively safe option because of the concern of biological hazards in the bioassay method (e.g., microbial infection) and ultraviolet exposure in the UV detection method. Compared to the expensive methods requiring specialized instruments and long-term training before working independently, such as GC, HPLC, and HPTLC, using the blue-LED illuminator was an economical option to estimate the yield of samples from a TLC plate.

Introduction

Thin-layer chromatography (TLC) is widely used as a qualitative and quantitative technique in the field of organic chemistry1,2,3. The main advantages of TLC are that it provides fast detection, flexible sample requirements, and does not require specialized equipment4. To date, even though many advanced approaches have been established, TLC is still the main method for identifying unknown samples in a mixture. However, the challenge of this approach is the lack of safe and inexpensive equipment for quantifying the sample yield, especially for developin....

Protocol

The present protocol is described using lovastatin as an example. Lovastatin was extracted from one-week-old Aspergillus terreus.

1. Compound extraction

NOTE: For details on compound extraction, please see Figure 1.

  1. Culture Aspergillus terreus on the potato dextrose agar (PDA, see Table of Materials) medium at 30 °C.
  2. Dry the culture at 40 °C for 24 .......

Representative Results

This study presented the blue-LED illumination method to estimate the yield of compounds, and this method was validated and compared to bioassay and UV-detected methods (Table 1). The regression models were developed based on the dimensions of bands and concentration of standards for three methods, respectively, to predict the yield of samples. First, in the results of the bioassay method, the R-square between the dimensions of the inhibition zone and lovastatin standards was 0.99, and the sample yield w.......

Discussion

The present study described a new approach, the blue-LED illuminator, to quantify compounds without using expensive and specialized equipment, such as HPTLC, HPLC, and GC method, and the method was compared with the bioassay and UV-detected methods to evaluate quantification performance. As a result, it was concluded that the blue-LED illumination method is a relatively safe and effective protocol used to quantify the yield of targeted compounds on the TLC plate.

Previous studies have reported.......

Acknowledgements

This study was supported by the Ministry of Science and Technology, Taiwan (MOST 108-2320-B-110-007-MY3).

....

Materials

NameCompanyCatalog NumberComments
American bacteriological AgarCondalab1802.00
Aspergillus terreus ATCC 20542
Blue-LED illuminatorMICROTEKBio-1000F
CentrifugeThermo Scientific HERAEUS Megafuge 8
Compact UV lampUVPUVGL-25
Ethyl AcetateMACRONMA-H078-10
Filter Paper 125mmADVANTEC60311102
ImageJNIHFreewarehttps://imagej.nih.gov/ij/download.html
Lovastatin standardACROSA0404262
MiBio Fluo MICROTEKV1.04
n-HexaneC-ECHOHH3102-000000-72EC
OriginProOriginLab9.1https://www.originlab.com/origin
Potato dextrose broth HSTBIO MEDIA110533
Rotary evaporatorEYELASB-1000
Sulfuric acidFluka30743-2.5L-GL
TLC silica gel 60 F254MERCK1.05554.0001
Trifluoroacetic acidAlfa Aesar10229873
Ultrasonic vibration machineDELTADC600

References

Explore More Articles

TLCBlue LED IlluminationYield EstimationCompound ExtractionColumn ChromatographyLovastatinNatural Products Chemistry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved