A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Developmental Biology
Cnidarians, including sea anemones, corals, and jellyfish, exhibit diverse morphology and lifestyles that are manifested in sessile polyps and free-swimming medusae. As exemplified in established models such as Hydra and Nematostella, stem cells and/or proliferative cells contribute to the development and regeneration of cnidarian polyps. However, the underlying cellular mechanisms in most jellyfish, particularly at the medusa stage, are largely unclear, and, thus, developing a robust method for identifying specific cell types is critical. This paper describes a protocol for visualizing stem-like proliferating cells in the hydrozoan jellyfish Cladonema pacificum. Cladonema medusae possess branched tentacles that continuously grow and maintain regenerative capacity throughout their adult stage, providing a unique platform with which to study the cellular mechanisms orchestrated by proliferating and/or stem-like cells. Whole-mount fluorescent in situ hybridization (FISH) using a stem cell marker allows for the detection of stem-like cells, while pulse labeling with 5-ethynyl-2'-deoxyuridine (EdU), an S phase marker, enables the identification of proliferating cells. Combining both FISH and EdU labeling, we can detect actively proliferating stem-like cells on fixed animals, and this technique can be broadly applied to other animals, including non-model jellyfish species.
Explore More Videos
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved