JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Fluorescence resonance energy transfer (FRET) is an imaging technique for detecting protein interactions in living cells. Here, a FRET protocol is presented to study the association of histone-modifying enzymes with transcription factors that recruit them to the target promoters for epigenetic regulation of gene expression in plant tissues.

Abstract

Epigenetic regulation of gene expression is commonly affected by histone modifying enzymes (HMEs) that generate heterochromatic or euchromatic histone marks for transcriptional repression or activation, respectively. HMEs are recruited to their target chromatin by transcription factors (TFs). Thus, detecting and characterizing direct interactions between HMEs and TFs are critical for understanding their function and specificity better. These studies would be more biologically relevant if performed in vivo within living tissues. Here, a protocol is described for visualizing interactions in plant leaves between a plant histone deubiquitinase and a plant transcription factor using fluorescence resonance energy transfer (FRET), which allows the detection of complexes between protein molecules that are within <10 nm from each other. Two variations of the FRET technique are presented: SE-FRET (sensitized emission) and AB-FRET (acceptor bleaching), in which the energy is transferred non-radiatively from the donor to the acceptor or emitted radiatively by the donor upon photobleaching of the acceptor. Both SE-FRET and AB-FRET approaches can be adapted easily to discover other interactions between other proteins in planta.

Introduction

Plant histone deubiquitinases play an important role in controlling gene expression by post-translational modification of histones, specifically by erasing their monoubiquitylation marks1. So far, OTLD1 is one of the only few plant histone deubiquitinases characterized at the molecular level in Arabidopsis2,3. OTLD1 removes monoubiquitin groups from the H2B histone molecules, thereby promoting the removal or addition of euchromatic acetylation and methylation modifications of H3 histones in the target gene chromatin4,5. Moreover....

Protocol

Nicotiana benthamiana, Agrobacterium tumefaciens strain EHA105, or GV3101 were used for the present study.

1. FRET vector construction

  1. Select fluorescent tags for the donor/acceptor FRET pair.
    1. Use EGFP from pPZP-RCS2A-DEST-EGFP-N115,28 (see Table of Materials) to generate the donor vector.
    2. Use mRFP from pPZP-RCS2A-DEST-mRFP-N1 (see Table of Materials) to generate the acceptor vector.
  2. Generate the donor/acceptor FRET constructs using a site-specific recombin....

Representative Results

Figure 2 illustrates the typical results of a SE-FRET experiment, in which the cell nuclei were simultaneously recorded in three channels (i.e., donor GFP, acceptor mRFP, and SE-FRET). These data were used to generate images of SE-FRET efficiency coded in a pseudo-color scale. On this scale, the transition from blue to red corresponds to an increase in FRET efficiency, a measure of protein-protein proximity from 0% to 100%. In this representative experiment, the SE-FRET signal was recorded i.......

Discussion

This FRET protocol is simple and easy to reproduce; it also requires minimal supply investment and utilizes standard equipment for many modern laboratories. Specifically, five main technical features distinguish the versatility of this procedure. First, the FRET constructs are generated using site-specific recombination, a cloning approach that is easy to use, produces accurate results, and saves time compared to traditional restriction enzyme-based cloning. Second, N. benthamiana plants are simple to grow, prod.......

Disclosures

No conflicts of interest were declared.

Acknowledgements

The work in V.C.'s laboratory is supported by grants from NIH (R35GM144059 and R01GM50224), NSF (MCB1913165 and IOS1758046), and BARD (IS-5276-20) to V.C.

....

Materials

NameCompanyCatalog NumberComments
Acetosyringone (3′,5′-Dimethoxy-4′-hydroxyacetophenone)Sigma-Aldrich#D134406-1G
Bacto AgarBD Biosciences#214010
Bacto tryptonBD Biosciences#211705
Bacto yeast extractBD Biosciences#212750 
Confocal laser scanning microscope (CLSM)ZeissLSM900Any CLSM with similar capabilities is suitable
EHA105VWR104013-310We use the stock in the Citovsky bacterial lab stock collection
Gateway BP Clonase II Invitrogen#11789100
Gateway LR Clonase IIInvitrogen#11791020
GV3101VWR104013-296We use the stock in the Citovsky bacterial lab stock collection
ImageJhttps://imagej.nih.gov/ij/download.html
MESSigma-Aldrich#69889-10G
MgCl2Sigma-Aldrich#63068-250G
NaClSigma-Aldrich#S5886-500G
Nicotiana benthamiana seedsHerbalistics PtyRA4 or LABWe use the stock in the Citovsky seed lab stock collection
pDONR207Invitrogen#12213013
pPZP-RCS2A-DEST-EGFP-N1 N/ARefs. 15, 28
pPZP-RCS2A-DEST-mRFP-C1N/AGenerated based on the pPZP-RCS2A-DEST-EGFP-C1 construct (see refs. 15, 28)
pPZP-RCS2A-DEST-mRFP-N1 N/AGenerated based on the pPZP-RCS2A-DEST-EGFP-N1 construct
RifampicinSigma-Aldrich#R7382-5G
SpectinomycinSigma-Aldrich#S4014-5G
Syringes without needlesBD309659
Zen software for CLSM imagingZeissZEN 3.0 versionThe software should be compatible with the CLSM used

References

  1. March, E., Farrona, S. Plant deubiquitinases and their role in the control of gene expression through modification of histones. Frontiers in Plant Science. 8, 2274 (2018).
  2. Isono, E., Nagel, M. K.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

FRETProtein protein InteractionAgroinfiltrationNicotiana BenthamianaHistone Modifying EnzymesTranscription FactorsLiving CellFluorescence Resonance Energy Transfer

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved