A subscription to JoVE is required to view this content. Sign in or start your free trial.
In the coculture system of dorsal root ganglia and Schwann cells, myelination of the peripheral nervous system can be studied. This model provides experimental opportunities to observe and quantify peripheral myelination and to study the effects of compounds of interest on the myelin sheath.
The process of myelination is essential to enable rapid and sufficient signal transduction in the nervous system. In the peripheral nervous system, neurons and Schwann cells engage in a complex interaction to control the myelination of axons. Disturbances of this interaction and breakdown of the myelin sheath are hallmarks of inflammatory neuropathies and occur secondarily in neurodegenerative disorders. Here, we present a coculture model of dorsal root ganglion explants and Schwann cells, which develops a robust myelination of peripheral axons to investigate the process of myelination in the peripheral nervous system, study axon-Schwann cell interactions, and evaluate the potential effects of therapeutic agents on each cell type separately. Methodologically, dorsal root ganglions of embryonic rats (E13.5) were harvested, dissociated from their surrounding tissue, and cultured as whole explants for 3 days. Schwann cells were isolated from 3-week-old adult rats, and sciatic nerves were enzymatically digested. The resulting Schwann cells were purified by magnetic-activated cell sorting and cultured under neuregulin and forskolin-enriched conditions. After 3 days of dorsal root ganglion explant culture, 30,000 Schwann cells were added to one dorsal root ganglion explant in a medium containing ascorbic acid. The first signs of myelination were detected on day 10 of coculture, through scattered signals for myelin basic protein in immunocytochemical staining. From day 14 onward, myelin sheaths were formed and propagated along the axons. Myelination can be quantified by myelin basic protein staining as a ratio of the myelination area and axon area, to account for the differences in axonal density. This model provides experimental opportunities to study various aspects of peripheral myelination in vitro, which is crucial for understanding the pathology of and possible treatment opportunities for demyelination and neurodegeneration in inflammatory and neurodegenerative diseases of the peripheral nervous system.
In the peripheral nervous system (PNS), rapid information transduction is mediated by myelin-enwrapped axons. The myelination of axons is essential to enable the fast propagation of electric impulses, since the conduction velocity of the nerve fibers correlates to the axon diameter and myelin thickness1. Sensory signaling from the periphery to the central nervous system (CNS) relies on the activation of first-order sensory neurons that reside in enlargements of the dorsal root, termed dorsal root ganglia (DRG). For the formation and maintenance of myelin, continuous communication between axons and Schwann cells, which are the myelinating Glia cells in the PNS, is mandatory2.
Many diseases of the PNS disturb the transduction of information by either primary axonal or demyelinating damage, resulting in hypesthesia or dysesthesia. First-order sensory neurons have the ability to regenerate to an extent after neuronal damage, by a complex interaction between the neuron and surrounding Schwann cells3. In this case, Schwann cells can undergo cellular reprogramming to clear axonal as well as myelin debris and promote axonal regeneration, resulting in remyelination4. Understanding the mechanisms of myelination in health and disease is important, in order to find possible treatment options for demyelinating disorders of the PNS. Myelin can also be damaged by acute neurotrauma, and approaches to promote myelination to advance functional recovery after peripheral nerve injury are under investigation5.
Our knowledge of peripheral myelination has benefited largely from myelinating cocultures of Schwann cells and sensory neurons. Since the first approaches were applied6,7,8, myelination has been studied intensely with the use of different coculture systems9,10,11. Here, we provide a rapid and facile protocol for robust in vitro myelination of dorsal root ganglion axons. The protocol for Schwann cell preparation is based on the protocol by Andersen et al.12, previously published in Pitarokoili et al.13. We use Schwann cells derived from juvenile rats and embryonic DRG explant cultures for the coculture, in which myelination occurs at around day 14. The goal of the method is to provide a system to investigate the formation of myelin as a result of direct axon-Schwann cell interaction, and to study modulators of PNS myelination. In comparison to dissociated neuronal cell cultures, DRG explants are more anatomically preserved and form long axonal processes. Quantification of the myelinated axon area provides a sufficient readout for myelination in the coculture. The method is a valuable tool to screen therapeutic compounds for their potential effect on PNS myelination, and can also be utilized in addition to in vivo studies in animal models14.
All procedures were performed in accordance with the European Communities Council Directive for the care and use of laboratory animals.
1. Schwann cell culture
2. DRG explant culture
3. Coculture
Myelination in the coculture was assessed on days 10, 12, 14, 16, 18, and 20. The DRG explants and Schwann cells were stained for MBP, βIII-tubulin, and DAPI. The axonal network in the coculture was dense and did not change visibly in the time course of the observation. The first signs of myelin, in the form of small fragments, were detectable on day 10 and increased on day 12 (Figure 2). The MBP-positive areas increased over time until day 20 of culture. The myelination was quantified ...
Here, we present a rapid and facile protocol for the generation of in vitro myelination by merging two separate cell type cultures, Schwann cells and dorsal root ganglion explants.
A critical step of the protocol is the cultivation of DRG explants, especially in the first days of culture. DRG are very fragile before a strong axonal network is built and must be handled very carefully, for example, when taken out of the incubator or during a change of medium. DRG that detach from the bo...
The authors declare to have no conflicts of interest.
We thank Prof. Dr. Ralf Gold and PD Dr. Gisa Ellrichmann for their advice and support.
Name | Company | Catalog Number | Comments |
Anti-MBP, rabbit | Novus Biologicals, Centannial, USA | ABIN446360 | |
Anti-ßIII-tubulin, mouse | Biolegend, San Diego, USA | 657402 | |
Ascorbic acid | Sigma Aldrich GmbH, Steinheim, Germany | A4403-100MG | |
B27-supplement | Thermo Fisher Scientific, Schwerte, Germany | 17504-044 | |
Biosphere Filter Tip, 100 µL | Sarstedt, Nümbrecht, Germany | 70760212 | |
Biosphere Filter Tip, 1250 µL | Sarstedt, Nümbrecht, Germany | 701186210 | |
Biosphere Filter Tip, 20 µL | Sarstedt, Nümbrecht, Germany | 701114210 | |
Biosphere Filter Tip, 300 µL | Sarstedt, Nümbrecht, Germany | 70765210 | |
Bovine serum albumin | Carl Roth, Karlsruhe, Germany | 8076.4 | |
Cell strainer, 100 µM | BD Bioscience, Heidelberg, Germany | 352360 | |
Centrifuge 5810-R | Eppendorf AG, Hamburg, Germany | 5811000015 | |
CO2 Incubator Heracell | Heraeus Instruments, Hanau, Germany | 51017865 | |
Coverslips 12 mm | Carl Roth, Karlsruhe, Germany | P231.1 | |
Curved fine forceps | Fine Science Tools GmbH, Heidelberg, Germany | 11370-42 | |
DAPI fluoromount-G(R) | Biozol, Eching, Germany | SBA-0100-20 | |
Dispase II | Sigma Aldrich GmbH, Steinheim, Germany | 4942078001 | |
Distilled water (Water Purification System) | Millipore, Molsheim, France | ZLXS5010Y | |
DMEM/F-12, GlutaMAX | Thermo Fisher Scientific, Schwerte, Germany | 31331093 | |
DPBS (no Ca2+ and no Mg2+) | Sigma Aldrich GmbH, Steinheim, Germany | D8537-6X500ML | |
Ethanol | VWR, Radnor, USA | 1009862500 | |
FCS | Sigma Aldrich GmbH, Steinheim, Germany | F7524 | FCS must be tested for Schwann cell culture |
Fine forceps (Dumont #5) | Fine Science Tools GmbH, Heidelberg, Germany | 11252-20 | |
Forceps | Fine Science Tools GmbH, Heidelberg, Germany | 11370-40 | |
Forskolin | Sigma Aldrich GmbH, Steinheim, Germany | F6886-10MG | |
Gelatin | Sigma Aldrich GmbH, Steinheim, Germany | G1393-20ML | |
Gentamycin | Thermo Fisher Scientific, Schwerte, Germany | 5710064 | |
Goat anti-mouse IgG Alexa Fluor 488 | Thermo Fisher Scientific, Schwerte, Germany | A11036 | |
Goat anti-rabbit IgG Alexa Fluor 568 | Thermo Fisher Scientific, Schwerte, Germany | A11001 | |
HBSS (no Ca2+ and no Mg2+) | Thermo Fisher Scientific, Schwerte, Germany | 14170138 | |
HERAcell Incubator | Heraeus Instruments, Hanau, Germany | 51017865 | |
Heraguard ECO 1.2 | Thermo Fisher Scientific, Schwerte, Germany | 51029882 | |
Horse serum | Pan-Biotech, Aidenbach, Germany | P30-0712 | |
Image J Software | HIH, Bethesda, USA | ||
Laminin | Sigma Aldrich GmbH, Steinheim, Germany | L2020-1MG | |
Leibovitz´s L-15 Medium | Thermo Fisher Scientific, Schwerte, Germany | 11415064 | |
L-Glutamine 200 mM | Thermo Fisher Scientific, Schwerte, Germany | 25030024 | |
MACS Multistand | Miltenyi Biotec, Bergisch Gladbach, Germany | 130042303 | |
Microscissors | Fine Science Tools GmbH, Heidelberg, Germany | 15000-08 | |
Microscope | Motic, Wetzlar, Germany | Motic BA 400 | |
Microscope Axio observer 7 | Zeiss, Oberkochen, Germany | 491917-0001-000 | |
Microscope slide | VWR, Radnor, USA | 630-1985 | |
MiniMACS separator | Miltenyi Biotec, Bergisch Gladbach, Germany | 130091632 | |
MS columns | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-042-201 | |
Neubauer counting chamber | Assistant, Erlangen, Germany | 40441 | |
Neuregulin | Peprotech, Rocky Hill, USA | 100-03 | |
Neurobasal medium | Thermo Fisher Scientific, Schwerte, Germany | 21103049 | |
NGF | Sigma Aldrich GmbH, Steinheim, Germany | N1408 | |
Normal goat serum | Biozol, Eching, Germany | S-1000 | |
Nunclon Δ multidishes, 4 well | Sigma Aldrich GmbH, Steinheim, Germany | D6789 | |
Paraformaldehyde | Acros Organics, New Jersey, USA | 10342243 | |
Penicillin/Streptomycin | Thermo Fisher Scientific, Schwerte, Germany | 15140-122 | |
Pipetboy | Eppendorf AG, Hamburg, Germany | 4430000018 | |
Pipettes | Eppendorf AG, Hamburg, Germany | 2231300004 | |
Poly-D-Lysin | Sigma Aldrich GmbH, Steinheim, Germany | P6407-5MG | |
Poly-L-Lysin | Sigma Aldrich GmbH, Steinheim, Germany | P4707-50ML | |
Reaction tubes, 15 mL | Sarstedt, Nümbrecht, Germany | 62554502 | |
Reaction tubes, 50 mL | Sarstedt, Nümbrecht, Germany | 62547254 | |
Reaction vessels, 1.5 mL | Sarstedt, Nümbrecht, Germany | 72690001 | |
Safety Cabinet S2020 1.8 | Thermo Fisher Scientific, Schwerte, Germany | 51026640 | |
Scissors | Fine Science Tools GmbH, Heidelberg, Germany | 14083-08 | |
Serological pipette, 10 mL | Sarstedt, Nümbrecht, Germany | 861254025 | |
Serological pipette, 25 mL | Sarstedt, Nümbrecht, Germany | 861685001 | |
Serological pipette, 5 mL | Sarstedt, Nümbrecht, Germany | 861253001 | |
Spatula | Fine Science Tools GmbH, Heidelberg, Germany | 10094-13 | |
Stereomicroscope Discovery.V8 | Zeiss, Oberkochen, Germany | 495015-0012-000 | |
Surgical scissors | Fine Science Tools GmbH, Heidelberg, Germany | 14007-14 | |
TC dish 100, cell + | Sarstedt, Nümbrecht, Germany | 833902300 | |
TC dish 35, cell + | Sarstedt, Nümbrecht, Germany | 833900300 | |
TC dish 60, cell + | Sarstedt, Nümbrecht, Germany | 833901300 | |
Thy-1 Microbeads (MACS Kit) | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-094-523 | |
Triton X-100 | Sigma Aldrich GmbH, Steinheim, Germany | X100-500ML | |
Trypan Blue Solution 0.4% | Thermo Fisher Scientific, Schwerte, Germany | 15250061 | |
Trypsin (2.5%), no phenol red | Thermo Fisher Scientific, Schwerte, Germany | 15090-046 | |
Trypsin-EDTA (0.05%), phenol red | Thermo Fisher Scientific, Schwerte, Germany | 25300-054 | |
Type I Collagenase | Sigma Aldrich GmbH, Steinheim, Germany | C1639 | |
Water bath type 1008 | GFL, Burgwedel, Germany | 4285 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved