A subscription to JoVE is required to view this content. Sign in or start your free trial.
This study reveals the mechanism of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma based on network pharmacology and experimental verification. The study also demonstrates that the PI3K/AKT signaling pathway plays a vital role in the action of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma.
We aimed to study the mechanism of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma (LUAD) based on network pharmacology and experimental verification. The effective components and potential targets of Trichosanthis and Fritillaria thunbergii were collected by high-throughput experiment and reference-guided (HERB) database of traditional Chinese medicine and a similarity ensemble approach (SEA) database, and the LUAD-related targets were queried by the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. A drug-component-disease-target network was constructed by Cytoscape software. Protein-protein interaction (PPI) network, gene ontology (GO) function, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted to obtain core targets and key pathways. An aqueous extract of Trichosanthes-Fritillaria thunbergii and A549 cells were used for the subsequent experimental validation. Through the HERB database and literature search, 31 effective compounds and 157 potential target genes of Trichosanthes-Fritillaria thunbergii were screened, of which 144 were regulatory targets of Trichosanthes-Fritillaria thunbergii in the treatment of lung adenocarcinoma. The GO functional enrichment analysis showed that the mechanism of action of Trichosanthes-Fritillaria thunbergii against lung adenocarcinoma is mainly protein phosphorylation. The KEGG pathway enrichment analysis suggested that the treatment of lung adenocarcinoma by Trichosanthes-Fritillaria thunbergii mainly involves the PI3K/AKT signaling pathway. The experimental validation showed that an aqueous extract of Trichosanthes-Fritillaria thunbergii could inhibit the proliferation of A549 cells and the phosphorylation of AKT. Through network pharmacology and experimental validation, it was verified that the PI3K/AKT signaling pathway plays a vital role in the action of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma.
Lung cancer refers to malignant tumors originating from the lung bronchial mucosa, including squamous cell carcinoma, adenocarcinoma, large cell carcinoma, and small cell carcinoma1. Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for about 40% of the total lung cancer cases2. Most patients are diagnosed at an advanced stage or have remote metastasis and, thus, lose the opportunity of surgery3. In current clinical treatment, concurrent chemoradiotherapy is the most common strategy for treating LUAD, but its application is limited due to serious adverse reactions
All the network pharmacology procedures were carried out in accordance with the Guidelines for Network Pharmacology Evaluation Methods18. All the experimental procedures were performed in accordance with the laboratory management regulations of the Beijing University of Chinese Medicine.
1. Network pharmacological prediction
A total of 31 Trichosanthes-Fritillaria thunbergii-related active components were identified, including 21 Trichosanthes and 10 Fritillaria thunbergia components, as well as 144 corresponding targets. Overall, 9,049 and 67 LUAD-related genes were extracted from the GeneCards database and the OMIM database, respectively. After deleting duplicated genes, 9,057 genes related to LUAD were identified. The intersection of the LUAD-related genes and Trichosanthes-Fritillaria thunbergii active.......
Generally, a complete network pharmacology study includes the identification of active components from databases, the acquisition of targets corresponding to active components and diseases, the construction of a drug-component-disease-target network, and the prediction of core targets and pathways. The association between active components and core proteins (molecular docking) is preliminarily predicted by computer technology, and the final verification is conducted using an experiment.
The se.......
This study was supported by the Innovation Training Program of Beijing University of Chinese Medicine (No: 202110026036).
....Name | Company | Catalog Number | Comments |
0.25% trypsin-EDTA | Gibco | R001100 | |
A549Â cell line | Procell | CL-0016 | |
AKT antibody | CST | 4691S | |
BCA Protein Assay Kit | Solarbio | PC0020 | |
Chemiluminescence detection system | Shanghai Qinxiang Scientific Instrument Factory | ChemiScope 6100 | |
Dulbecco's modified eagle medium (DMEM) | Solarbio | 11995 | |
Enhanced chemiluminescence (ECL) kit | ABclonal | RM00021 | |
Fetal bovine serum | ScienCell | 0025 | |
HRP Goat Anti-Rabbit IgG (H+L) | ABclonal | AS014 | |
MTS assay kit | Promega | G3580 | |
p-AKT antibody | CST | 6040S | |
Penicillin streptomycin | Gibco | C14-15070-063 | |
Phenylmethanesulfonyl fluoride (PMSF) | Solarbio | P0100 | |
Phosphatase inhibitor | Beyotime | P1081 | |
Phosphate buffered saline (PBS) | Solarbio | P1020 | |
Polyvinylidene difluoride (PVDF) membranes | Millipore | ISEQ00010 | |
RIPA lysis solution | Solarbio | R0010 | |
Rotary evaporator | Shanghai Yarong Biochemical Instrument Factory | RE52CS-1 | |
Vacuum freeze-drying mechanism | Ningbo Scientz Biotechnology | SCIENTZ-10 | |
β-Actin antibody | ABclonal | AC026 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved