JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Genetics

Adipocyte-Specific ATAC-Seq with Adipose Tissues Using Fluorescence-Activated Nucleus Sorting

Published: March 17th, 2023

DOI:

10.3791/65033

1Department of Biochemistry and Molecular Biology, Indiana University School of Medicine

We present a protocol for assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) specifically on adipocytes using nucleus sorting with adipose tissues isolated from transgenic reporter mice with nuclear fluorescence labeling.

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) is a robust technique that enables genome-wide chromatin accessibility profiling. This technique has been useful for understanding the regulatory mechanisms of gene expression in a range of biological processes. Although ATAC-seq has been modified for different types of samples, there have not been effective modifications of ATAC-seq methods for adipose tissues. Challenges with adipose tissues include the complex cellular heterogeneity, large lipid content, and high mitochondrial contamination. To overcome these problems, we have developed a protocol that allows adipocyte-specific ATAC-seq by employing fluorescence-activated nucleus sorting with adipose tissues from the transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mouse. This protocol produces high-quality data with minimal wasted sequencing reads while reducing the amount of nucleus input and reagents. This paper provides detailed step-by-step instructions for the ATAC-seq method validated for the use of adipocyte nuclei isolated from mouse adipose tissues. This protocol will aid in the investigation of chromatin dynamics in adipocytes upon diverse biological stimulations, which will allow for novel biological insights.

Adipose tissue, which is specialized for storing excess energy in the form of lipid molecules, is a key organ for metabolic regulation. The strict control of adipocyte formation and maintenance is vital for adipose tissue function and whole-body energy homeostasis1. Many transcriptional regulators play a critical role in the control of adipocyte differentiation, plasticity, and function; some of these regulators are implicated in metabolic disorders in humans2,3. Recent advances in high-throughput sequencing techniques for gene expression and epigenomic analysis have further facilitated....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Animal care and experimentation were performed according to procedures approved by the Institutional Animal Care and Use Committee of Indiana University School of Medicine.

1. Preparations before beginning the experiment

  1. Tissue preparation
    1. For adipocyte nucleus labeling, cross NuTRAP mice with adipocyte-specific adiponectin-Cre lines (Adipoq-Cre) to generate Adipoq-NuTRAP mice, which are hemizygous for both Adipoq-Cre and NuTRAP.
    2. Dissect the .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To analyze adipose tissue using this ATAC-seq protocol, we generated Adipoq-NuTRAP mice that were fed chow diets; we then isolated adipocyte nuclei from epididymal white adipose tissue (eWAT), inguinal white adipose tissue (iWAT), and brown adipose tissue (BAT) by using flow cytometry. The isolated nuclei were used for tagmentation, followed by DNA purification, PCR amplification, quality check steps, sequencing, and data analysis, as described above. The purpose of this representative experiment was to profile the chrom.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this paper, we have presented an optimized ATAC-seq protocol to assess adipocyte-specific chromatin accessibility in vivo. This ATAC-seq protocol using the Adipoq-NuTRAP mouse successfully generated adipocyte-specific chromatin accessibility profiles. The most critical factor for successful and reproducible ATAC-seq experiments is nucleus quality. It is critical to immediately snap-freeze the dissected adipose tissues in liquid nitrogen and store them safely at −80 °C without thawing until use. It .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the IUSM Showalter Research Trust Fund (to H.C.R.), an IUSM Center for Diabetes and Metabolic Diseases Pilot and Feasibility grant (to H.C.R.), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK129289 to H.C.R.), and the American Diabetes Association Junior Faculty Award (7-21-JDF-056 to H.C.R.).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Animals
Adiponectin-Cre mouseThe Jackson Laboratory28020
NuTRAP mouseThe Jackson Laboratory29899
Reagents & Materials
1.5 mL DNA-LoBind tubesEppendorf86-923
100 µm cell strainerFalcon352-360
15 mL tubesVWR525-1071
2x TD bufferIllumina15027866
384-well PCR plateApplied biosystem4483285
40 µm cell strainerFalcon352-340
50 mL tubesVWR525-1077
AMPure XP reagent (SPRI beads)Beckman CoulterA63881
Bioanalyzer High Sensitivity DNA kitAgilent Technologies5067-4626
Clear adhesive filmApplied biosystem4306311
DNase/RNase-free distilled waterInvitrogen10977015
Dounce tissue grinderDWK Life Sciences357542
DTTSigmaD9779
DynaMag-96 side skirted magnetThermo Fishers12027
FACS tubesFalcon 28719128
HEPESBoston BioProductsBBH-75
Hoechst 33342Invitrogen2134015
KCl (2 M)Boston BioProductsMT-252
Magnetic separation rack for PCR 8-tube stripsEpiCypher10-0008
MgCl2 (1 M)Boston BioProductsMT-200
MinElute PCR purification kitQiagen28004
NEBNext High-Fidelity 2x PCR master mixBioLabsM0541S
NP40Thermo Fishers28324
PCR 8-tube stripUSA scientific1402-4708
Protease inhibitor cocktail (100x)Thermo Fishers78439
Qubit dsDNA HS assay kitInvitrogenQ32851
SucroseSigmaS0389-1KG
SYBR Green I (10,000x)InvitrogenS7563
TDE I enzymeIllumina15027865
Instruments
Flow cytometerBD BiosciencesFACSAria Fusion
Qubit fluorometerInvitrogenQ33226
Real-Time PCR systemThermo FishersQuantStudio 5

  1. Sethi, J. K., Vidal-Puig, A. J. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research. 48 (6), 1253-1262 (2007).
  2. Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metabolism. 4 (4), 263-273 (2006).
  3. Bielczyk-Maczynska, E. White adipocyte plasticity in physiology and disease. Cells. 8 (12), 1507 (2019).
  4. Basu, U., Romao, J. M., Guan, L. L. Adipogenic transcriptome profiling using high throughput technologies. Journal of Genomics. 1, 22-28 (2013).
  5. Esteve Rafols, M. Adipose tissue: Cell heterogeneity and functional diversity. Endocrinologia y Nutricion. 61 (2), 100-112 (2014).
  6. Kwok, K. H., Lam, K. S., Xu, A. Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Experimental and Molecular Medicine. 48, e215 (2016).
  7. Roh, H. C., et al. Simultaneous transcriptional and epigenomic profiling from specific cell types within heterogeneous tissues in vivo. Cell Reports. 18 (4), 1048-1061 (2017).
  8. Roh, H. C., et al. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Molecular Metabolism. 42, 101086 (2020).
  9. Roh, H. C., et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cellular Metabolism. 27 (5), 1121.e5-1137.e5 (2018).
  10. Buenrostro, J. D., et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods. 10 (12), 1213-1218 (2013).
  11. Corces, M. R., et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genetics. 48 (10), 1193-1203 (2016).
  12. Corces, M. R., et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature Methods. 14 (10), 959-962 (2017).
  13. Wu, J., et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature. 557 (7704), 256-260 (2018).
  14. Bagchi, D. P., MacDougald, O. A. Identification and dissection of diverse mouse adipose depots. Journal of Visualized Experiments. (149), e59499 (2019).
  15. So, J., et al. Chronic cAMP activation induces adipocyte browning through discordant biphasic remodeling of transcriptome and chromatin accessibility. Molecular Metabolism. 66, 101619 (2022).
  16. Loft, A., Herzig, S., Schmidt, S. F. Purification of GFP-tagged nuclei from frozen livers of INTACT mice for RNA- and ATAC-sequencing. STAR Protocols. 2 (3), 100805 (2021).
  17. Heyward, F. D., et al. Integrated genomic analysis of AgRP neurons reveals that IRF3 regulates leptin's hunger-suppressing effects. bioRxiv. , (2022).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved