Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a protocol for assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) specifically on adipocytes using nucleus sorting with adipose tissues isolated from transgenic reporter mice with nuclear fluorescence labeling.

Abstract

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) is a robust technique that enables genome-wide chromatin accessibility profiling. This technique has been useful for understanding the regulatory mechanisms of gene expression in a range of biological processes. Although ATAC-seq has been modified for different types of samples, there have not been effective modifications of ATAC-seq methods for adipose tissues. Challenges with adipose tissues include the complex cellular heterogeneity, large lipid content, and high mitochondrial contamination. To overcome these problems, we have developed a protocol that allows adipocyte-specific ATAC-seq by employing fluorescence-activated nucleus sorting with adipose tissues from the transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mouse. This protocol produces high-quality data with minimal wasted sequencing reads while reducing the amount of nucleus input and reagents. This paper provides detailed step-by-step instructions for the ATAC-seq method validated for the use of adipocyte nuclei isolated from mouse adipose tissues. This protocol will aid in the investigation of chromatin dynamics in adipocytes upon diverse biological stimulations, which will allow for novel biological insights.

Introduction

Adipose tissue, which is specialized for storing excess energy in the form of lipid molecules, is a key organ for metabolic regulation. The strict control of adipocyte formation and maintenance is vital for adipose tissue function and whole-body energy homeostasis1. Many transcriptional regulators play a critical role in the control of adipocyte differentiation, plasticity, and function; some of these regulators are implicated in metabolic disorders in humans2,3. Recent advances in high-throughput sequencing techniques for gene expression and epigenomic analysis have further facilitated....

Protocol

Animal care and experimentation were performed according to procedures approved by the Institutional Animal Care and Use Committee of Indiana University School of Medicine.

1. Preparations before beginning the experiment

  1. Tissue preparation
    1. For adipocyte nucleus labeling, cross NuTRAP mice with adipocyte-specific adiponectin-Cre lines (Adipoq-Cre) to generate Adipoq-NuTRAP mice, which are hemizygous for both Adipoq-Cre and NuTRAP.
    2. Dissect the .......

Representative Results

To analyze adipose tissue using this ATAC-seq protocol, we generated Adipoq-NuTRAP mice that were fed chow diets; we then isolated adipocyte nuclei from epididymal white adipose tissue (eWAT), inguinal white adipose tissue (iWAT), and brown adipose tissue (BAT) by using flow cytometry. The isolated nuclei were used for tagmentation, followed by DNA purification, PCR amplification, quality check steps, sequencing, and data analysis, as described above. The purpose of this representative experiment was to profile the chrom.......

Discussion

In this paper, we have presented an optimized ATAC-seq protocol to assess adipocyte-specific chromatin accessibility in vivo. This ATAC-seq protocol using the Adipoq-NuTRAP mouse successfully generated adipocyte-specific chromatin accessibility profiles. The most critical factor for successful and reproducible ATAC-seq experiments is nucleus quality. It is critical to immediately snap-freeze the dissected adipose tissues in liquid nitrogen and store them safely at −80 °C without thawing until use. It .......

Acknowledgements

This work was supported by the IUSM Showalter Research Trust Fund (to H.C.R.), an IUSM Center for Diabetes and Metabolic Diseases Pilot and Feasibility grant (to H.C.R.), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK129289 to H.C.R.), and the American Diabetes Association Junior Faculty Award (7-21-JDF-056 to H.C.R.).

....

Materials

NameCompanyCatalog NumberComments
Animals
Adiponectin-Cre mouseThe Jackson Laboratory28020
NuTRAP mouseThe Jackson Laboratory29899
Reagents & Materials
1.5 mL DNA-LoBind tubesEppendorf86-923
100 µm cell strainerFalcon352-360
15 mL tubesVWR525-1071
2x TD bufferIllumina15027866
384-well PCR plateApplied biosystem4483285
40 µm cell strainerFalcon352-340
50 mL tubesVWR525-1077
AMPure XP reagent (SPRI beads)Beckman CoulterA63881
Bioanalyzer High Sensitivity DNA kitAgilent Technologies5067-4626
Clear adhesive filmApplied biosystem4306311
DNase/RNase-free distilled waterInvitrogen10977015
Dounce tissue grinderDWK Life Sciences357542
DTTSigmaD9779
DynaMag-96 side skirted magnetThermo Fishers12027
FACS tubesFalcon 28719128
HEPESBoston BioProductsBBH-75
Hoechst 33342Invitrogen2134015
KCl (2 M)Boston BioProductsMT-252
Magnetic separation rack for PCR 8-tube stripsEpiCypher10-0008
MgCl2 (1 M)Boston BioProductsMT-200
MinElute PCR purification kitQiagen28004
NEBNext High-Fidelity 2x PCR master mixBioLabsM0541S
NP40Thermo Fishers28324
PCR 8-tube stripUSA scientific1402-4708
Protease inhibitor cocktail (100x)Thermo Fishers78439
Qubit dsDNA HS assay kitInvitrogenQ32851
SucroseSigmaS0389-1KG
SYBR Green I (10,000x)InvitrogenS7563
TDE I enzymeIllumina15027865
Instruments
Flow cytometerBD BiosciencesFACSAria Fusion
Qubit fluorometerInvitrogenQ33226
Real-Time PCR systemThermo FishersQuantStudio 5

References

  1. Sethi, J. K., Vidal-Puig, A. J. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research. 48 (6), 1253-1262 (2007).
  2. Farmer, S. R.

Explore More Articles

Adipocyte specific ATAC seqFluorescence activated Nucleus SortingAdipose TissueGene Expression Regulatory MechanismsNuclear IsolationFACSTn5 TransposaseATAC sequencing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved