Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A simple and cost-efficient fabrication method based on the solvent evaporation technique is presented to optimize the performance of a soft capacitive pressure sensor, which is enabled by porosity control in the dielectric layer using different mass ratios of the molding PDMS/toluene solution.

Abstract

Soft pressure sensors play a significant role in developing "man-machine" tactile sensation in soft robotics and haptic interfaces. Specifically, capacitive sensors with micro-structured polymer matrices have been explored with considerable effort because of their high sensitivity, wide linearity range, and fast response time. However, the improvement of the sensing performance often relies on the structural design of the dielectric layer, which requires sophisticated microfabrication facilities. This article reports a simple and low-cost method to fabricate porous capacitive pressure sensors with improved sensitivity using the solvent evaporation-based method to tune the porosity. The sensor consists of a porous polydimethylsiloxane (PDMS) dielectric layer bonded with top and bottom electrodes made of elastic conductive polymer composites (ECPCs). The electrodes were prepared by scrape-coating carbon nanotubes (CNTs)-doped PDMS conductive slurry into mold-patterned PDMS films. To optimize the porosity of the dielectric layer for enhanced sensing performance, the PDMS solution was diluted with toluene of different mass fractions instead of filtering or grinding the sugar pore-forming agent (PFA) into different sizes. The evaporation of the toluene solvent allowed the fast fabrication of a porous dielectric layer with controllable porosities. It was confirmed that the sensitivity could be enhanced more two-fold when the toluene to PDMS ratio was increased from 1:8 to 1:1. The research proposed in this work enables a low-cost method of fabricating fully integrated bionic soft robotic grippers with soft sensory mechanoreceptors of tunable sensor parameters.

Introduction

In recent years, flexible pressure sensors have been drawing attention due to their indispensable application in soft robotics1,2,3, "man-machine" haptic interfaces4,5, and health monitoring6,7,8. Generally, the mechanisms for pressure sensing include piezoresistive1,4,7, piezoelectric2,

Protocol

1. Fabrication of the soft capacitive pressure sensor with a porous PDMS dielectric layer

  1. Manufacturing of the porous PDMS dielectric layer
    1. Prepare the sugar/erythritol porous template following the steps below.
      1. Filter the sugar with sample sieves with apertures of 270 µm and 500 µm. Choose sugar with a particle diameter in the range of 270-500 µm.
        NOTE: A larger or smaller sugar particle size is also acceptable as long as the uniformity is wi.......

Representative Results

The photograph of the lumped sugar/erythritol porous template is shown in Figure 3A. Figure 3B shows the flexible electrode layer with a scrape-coated ECPCs pattern. Figure 3C shows the soft capacitive pressure sensor with a porous dielectric layer fabricated with the proposed method. Four porous PDMS dielectric layers were fabricated based on PDMS/toluene solutions with different mass ratios of 1:1, 3:1, 5:1, and 8.......

Discussion

This work proposes a simple method based on solvent evaporation to control the porosity, and a series of experimental results have proved its feasibility. Although the porous structure has been widely used in the flexible capacitive pressure sensor, the porosity control still needs further optimization. Unlike existing methods for changing the particle size of the PFA11,12,13,18,

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 62273304.

....

Materials

NameCompanyCatalog NumberComments
3D printerZhejiang Qidi Technology Co., LtdX-MAX
3D printing metarialsZhejiang Qidi Technology Co., Ltd3D Printing Filament PLA 1.75 mm
Carbon nanotubes (CNTs)XFNANOXFM13
Data acquisition (DAQ)National InstrumentsUSB6002
Double side tapeMinnesota Mining and Manufacturing (3M)3M VHB 49101 mm thick
Electrode metal moldGuangdong Shunde Molarobot Co., LtdThis metal mold is a round metal plate with a flat bottom round groove and an embossed electrode pattern of 0.2 mm thick in the middle of the groove.
ErythritolShandong Sanyuan Biotechnology Co.,Ltd.
Isopropyl Alcohol (IPA)Sinopharm chemical reagent Co., Ltd80109218
LabVIEWNational InstrumentsLabVIEW 2019
LCR meterKeysightEA4980AL
Metal wireHangzhou Hongtong WIRE&CABLE Co., Ltd.2UEW/155
MicroscopeAosviT2-3M180
Numerical modeling softwareCOMSOLCOMSOL Multiphysics 5.6
Polydimethylsiloxane (PDMS)Dow Chemical CompanySYLGAR 184 Silicone Elastomer KitTwo parts (base and curing agent)
Sealing filmCorningPM-996parafilm
Si waferSuzhou Crystal Silicon Electronic & Technology Co.,LtdZK20220416-03Diameter (mm): 50.8 +/- 0.3
Type/Orientation: P/100
Thickness (µm): 525 +/- 25
Silver conductive paintElectron Microscopy Sciences12686-15
Stepping motorBEIJING HAI JIE JIA CHUANG Technology Co., Ltd57H B56L4-30DB
Sugar/erythritol template metal moldGuangdong Shunde Molarobot Co., LtdThis metal mold is a 5 mm thick square metal plate with a flat bottom square groove of 2.5 mm deep.
TolueneSinopharm chemical reagent Co., Ltd10022819

References

  1. Ozioko, O., et al. SensAct: The soft and squishy tactile Sensor with integrated flexible actuator. Advanced Intelligent Systems. 3 (3), 1900145 (2021).
  2. Qiu, Y., et al.

Explore More Articles

Soft Capacitive Pressure SensorSolvent EvaporationPorosity ControlDielectric LayerPorous PDMSSugar erythritol TemplateECPC ElectrodeCarbon NanotubesFlexible Sensor

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved