Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A simple, inexpensive, and novel apparatus for performing solid phase peptide syntheses in a commercial microwave reactor is presented.

Abstract

A home-built apparatus to perform solid phase peptide synthesis (SPPS), assisted by microwave irradiation and heating, is presented. In contrast to conventional SPPS reaction vessels, which drain solvent and byproducts via a frit located at the bottom of the vessel, the presented apparatus employs a gas dispersion tube under vacuum to remove solvent, byproducts, and excess reagents. The same gas dispersion tube supplies nitrogen gas agitation of the SPPS beads during the reaction steps of coupling and deprotection. Microwave heating is beneficial for SPPS couplings of sterically hindered residues, such as alpha-aminoisobutyric acid (Aib), an alpha,alpha-dialkylated amino acid residue. This home-built apparatus has been used to prepare, via manual Fmoc SPPS methods, heptameric and octameric peptides dominated by the Aib residue, which is notoriously difficult to couple under standard room temperature conditions and reagents. Further, typical commercial microwave SPPS reactors are dedicated exclusively to SPPS synthesis rendering them inaccessible to non-SPPS users. In contrast, the presented apparatus preserves the versatility of the microwave reactor for conventional microwave acceleration of chemical reactions, as the apparatus is trivially removed from the commercial microwave reactor.

Introduction

Merrifield's introduction of solid phase peptide synthesis SPPS in the 1960s revolutionized peptide and chemical syntheses and was justly rewarded with a Nobel Prize in Chemistry1,2. In subsequent decades, many researchers have refined Merrifield's original techniques, leading to two alternatives that dominate SPPS practices: fluorenylmethoxycarbonyl (FMOC)-based versus tert-butyl oxycarbonyl (BOC)-based3. Final cleavage of the peptide from solid resin in FMOC requires a cocktail containing trifluoracetic acid, as compared to HF for BOC techniques, making FMOC-based met....

Protocol

1. Assemble the apparatus (Figure 1)

NOTE: All the components for assembling the apparatus are found in the Table of Materials.

  1. Assemble the vacuum outlet.
    1. Connect 2" of 1/8" Teflon tubing to the right side of the "Tee" (Figure 1, Part labeled "1") made of ethylene tetrafluoroethylene (ETFE).
    2. Connect the 1/8" Teflon tube t.......

Representative Results

Examples of peptide sequences prepared with our apparatus are shown in Figure 2 and Figure 3. Table 1 summarizes the solutions, microwave parameters, and washes we employed. MALDI-TOF mass spectrometry confirmation is shown in the figures. Mass recovery of these peptides has been above 80%. Significantly, all these sequences have multiple couplings between adjacent alpha, alpha-dialkylated amino acids. These are among the most difficult residues.......

Discussion

The apparatus presented here invokes a simple, novel, and inexpensive method for removing solvent, excess reagents and waste products, as well as adding nitrogen gas agitation, during microwave-assisted SPPS. In contrast to conventional SPPS vessels, which invoke a frit at the bottom of the vessel, the presented apparatus invokes a gas dispersion tube under vacuum to aspirate the vessel. The reaction vessel is therefore an ordinary test-tube, which is heated at the location recommended by the microwave reactor manufactur.......

Acknowledgements

The authors are grateful for the support of Fairfield University's INSPIRE grants, the support of the Department of Chemistry & Biochemistry at Fairfield University, and the assistance of Dr. Dorothy Szobcynski for her expertise in managing the laboratory. Additionally, the authors are grateful to Professors Jillian Smith-Carpenter and Aaron Van Dyke for discussions regarding peptide and organic synthesis. The authors appreciate the support of the Publication Fund of the College of Arts & Sciences of Fairfield University.

....

Materials

NameCompanyCatalog NumberComments
CEM Discover SP Microwave ReactorCEMDiscontinued.  Recently replaced in the product line by the Discover 2.0
Diisopropylcarbodiimide (DCC)TCI America
Dimethylformamide (DMF)Thermo Scientific Chemicals
Gas dispersion tube, micro, ChemglassCG-207-02medium porosity
micro septumChemGlassCG-3022-20"NMR tube" type septum
MorpholineThermo Scientific Chemicals
N-Fmoc-protected Amino acids
Oyxma PureTCI America
Side-arm Ehrlenmeyer flaskAssorted vendorsWaste collection
"Tee"IdexP-713ETFE
teflon tubing 1/8", Restek25306OD x 0.063" ID, 3 m
Test tube (holder for reaction vessel external to microwave) Assorted vendors(30 x 175)
Test tube (reaction vessel)Corning Glass9820-25XPyrex 25 x 200 mm, rimless 
ValveIdexP-721ETFE (2x)
Wang SPPS Resin, 1% crosslinked divinylbenzene, 100-200 meshAdvanced ChemTech

References

  1. Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc. 85 (14), 2149-2154 (1963).
  2. Sheppard, R. C. Nobel prize: Merrifield wins in chemistry. Nature. 311 ....

Explore More Articles

BiologySolid phase peptide synthesismicrowave assisted chemistrychemical synthesisMALDI TOF mass spectrometry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved