High-performance liquid chromatography(HPLC), formerly referred to as High-pressure liquid chromatography, is a powerful technique used to separate, identify, and quantify components in complex mixtures. The term "high pressure" refers to using high pressure to push the liquid mobile phase through the tightly packed columns.

In HPLC, two phases play a critical role in the separation process:

  1. Mobile Phase: This is a liquid solvent that flows through the system, carrying the sample with it. The solvent is chosen based on its polarity to optimize the interaction with the analytes and the stationary phase. The "polarity index" serves as a guide to selecting the suitable solvent for separation.
  2. Stationary Phase: The stationary phase is a solid material, often silica-based, packed within the column. In reverse-phase HPLC, the stationary phase is typically derivatized silica, such as octadecyl (C18) silica. The small particle size of the packed material creates a high surface area, enhancing interactions with the analytes. To reduce undesirable interactions, such as those with unreacted silanol groups, the stationary phase is often end-capped with reagents like trimethylchlorosilane

Separation occurs as the analytes interact differently with both the mobile and stationary phases, depending on their chemical properties, which leads to differential migration through the column.

Sometimes, solute molecules bind irreversibly to the stationary phase, clogging the analytical column and decreasing its performance. To prevent this, a guard column is placed before the analytical column. A precolumn called a scavenger column may also be placed between the mobile phase reservoir and the injector. This ensures that the solvent enters the analytical column, which is already saturated with silica from the scavenger column, preventing unwanted reactions and extending the lifetime of the analytical column.

After the separation, analytes are detected by various detectors, depending on the characteristics of the compounds. The results are visualized as chromatograms, with peaks corresponding to the different components of the mixture. This provides both qualitative and quantitative data about the sample.

Bölümden 11:

article

Now Playing

11.17 : High-Performance Liquid Chromatography: Introduction

Principles of Chromatography

359 Görüntüleme Sayısı

article

11.1 : Kromatografik Yöntemler: Terminoloji

Principles of Chromatography

452 Görüntüleme Sayısı

article

11.2 : Kromatografik Yöntemler: Sınıflandırma

Principles of Chromatography

529 Görüntüleme Sayısı

article

11.3 : Analit Adsorpsiyonu ve Dağıtımı

Principles of Chromatography

360 Görüntüleme Sayısı

article

11.4 : Kromatografi Kolonlarında Difüzyon

Principles of Chromatography

230 Görüntüleme Sayısı

article

11.5 : Kromatografik Çözünürlük

Principles of Chromatography

196 Görüntüleme Sayısı

article

11.6 : Kolon Verimliliği: Plaka Teorisi

Principles of Chromatography

244 Görüntüleme Sayısı

article

11.7 : Kolon Verimliliği: Oran Teorisi

Principles of Chromatography

162 Görüntüleme Sayısı

article

11.8 : Kromatografik Separasyonların Optimize Edilmesi

Principles of Chromatography

235 Görüntüleme Sayısı

article

11.9 : Silika Jel Kolon Kromatografisi: Genel Bakış

Principles of Chromatography

665 Görüntüleme Sayısı

article

11.10 : İnce Tabaka Kromatografisi (TLC): Genel Bakış

Principles of Chromatography

658 Görüntüleme Sayısı

article

11.11 : Gaz Kromatografisi: Giriş

Principles of Chromatography

327 Görüntüleme Sayısı

article

11.12 : Gaz Kromatografisi: Kolon Tipleri ve Sabit Fazlar

Principles of Chromatography

219 Görüntüleme Sayısı

article

11.13 : Gaz Kromatografisi: Numune Enjeksiyon Sistemleri

Principles of Chromatography

218 Görüntüleme Sayısı

article

11.14 : Gaz Kromatografisi: Dedektörlere Genel Bakış

Principles of Chromatography

203 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır