The transfer function is a fundamental concept in the analysis and design of linear time-invariant (LTI) systems. It offers a concise way to understand how a system responds to different inputs in the frequency domain. It serves as a bridge between the time-domain differential equations that describe system dynamics and the frequency-domain representation that facilitates easier manipulation and analysis.

To derive the transfer function, consider a general nth-order linear time-invariant differential equation of the form:

Equation1

Here, c(t) is the output, r(t) is the input, and ai and bi are constant coefficients. Applying the Laplace transform to both sides, assuming all initial conditions are zero, the differential equation can be converted into an algebraic equation in terms of s, the complex frequency variable. Rearranging terms, we get:

Equation2

The transfer function H(s) is defined as the ratio of the output C(s) to the input

R(s):

Equation3

This expression shows that the transfer function is a rational function of s. The numerator is the polynomial formed by the input coefficients, and the denominator is the characteristic polynomial of the differential equation.

This transfer function indicates how the system's output c(t) responds to an input

r(t) in the frequency domain. The transfer function can be represented in a block diagram with the input R(s) on the left, the output C(s) on the right, and the transfer function H(s) inside the block. This visualization simplifies understanding and analyzing system behavior, especially when dealing with more complex systems.

Etiketler
Transfer FunctionControl SystemsLinear Time invariantLTI SystemsFrequency DomainTime domain Differential EquationsLaplace TransformAlgebraic EquationComplex Frequency VariableRational FunctionOutput ResponseInput ResponseBlock DiagramSystem Dynamics

Bölümden 21:

article

Now Playing

21.1 : Transfer Function in Control Systems

Modeling in Time and Frequency Domain

152 Görüntüleme Sayısı

article

21.2 : Elektrik Sistemleri

Modeling in Time and Frequency Domain

160 Görüntüleme Sayısı

article

21.3 : Mekanik Sistemler

Modeling in Time and Frequency Domain

103 Görüntüleme Sayısı

article

21.4 : Elektro-mekanik Sistemler

Modeling in Time and Frequency Domain

238 Görüntüleme Sayısı

article

21.5 : Frekans Alanında Doğrusal Yaklaşım

Modeling in Time and Frequency Domain

71 Görüntüleme Sayısı

article

21.6 : Durum Uzayı Gösterimi

Modeling in Time and Frequency Domain

120 Görüntüleme Sayısı

article

21.7 : Fonksiyonu Durum Uzayına Aktar

Modeling in Time and Frequency Domain

115 Görüntüleme Sayısı

article

21.8 : Aktarım Fonksiyonu için Durum Uzayı

Modeling in Time and Frequency Domain

99 Görüntüleme Sayısı

article

21.9 : Zaman Tanım Tanımında Doğrusal Yaklaşım

Modeling in Time and Frequency Domain

42 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır