Sign In

Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy

Overview

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - The University of Arizona
Demonstrating Author: Bradley Schmitz

Soil comprises the thin layer at the earth’s surface, containing biotic and abiotic factors that contribute to life. The abiotic portion includes inorganic particles ranging in size and shape that determine the soil’s texture. The biotic portion incorporates plant residues, roots, organic matter, and microorganisms. Soil microbe abundance and diversity is expansive, as one gram of soil contains 107-8 bacteria, 106-8 actinomycetes, 105-6 fungi, 103 yeast, 104-6 protozoa, 103-4 algae, and 53 nematodes. Together, the biotic and abiotic factors form architectures around plant roots, known as the rhizosphere, that provide favorable conditions for soil microorganisms.

Biotic and abiotic factors promote life in soils. However, they also contribute stressful dynamics that limit microbes. Biotic stress involves competition amongst life to adapt and survive in environmental conditions. For example, microbes can secrete inhibitory or toxic substances to harm neighboring microorganisms. Penicillium notatum is a notorious fungus, as it reduces competition for nutrients by producing an antimicrobial, which humans harvest to create the pharmaceutical penicillin. Abiotic stresses arise from physical or chemical properties limiting microbial survival, such as light, moisture, temperature, pH, nutrients, and texture.

Procedure

1. Soil Slide Microcosm Preparation

  1. Collect garden soil from the surface (0-6” depth), and weigh 150 g soil into two separate cups.
    1. If soil has high density of organic matter, weigh 100 g.
  2. Label one cup “Treatment” and the other “Control.”
  3. Calculate amount of water needed to alter moisture content.
    1. Moisture content is often close to field capacity.
      Equation 1 1

      Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

Fungi display thick, filamentous hyphae (Figure 2). Actinomycetes display thin, filamentous hyphae. Bacteria display small cocci or rod shapes. They’re often found in clumps, on soil particles, or lining fungal hyphae. Soil particles display irregular, dark shapes (Figure 3).

Figure 2
Figure 2. Contact slide image using 100X objective lens.
Photo courtesy W.H. Ful

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

The contact slide assay, also referred to as the buried-slide, is a simple technique utilized to qualitatively observe soil biota. This assay qualitatively shows the spatial interactions between fungal hyphae, actinomycete filaments, bacteria, and soil particles. Individuals or industry can employ this assay to gather knowledge on a particular soil’s health in regards to agriculture, gardening, composting, teaching, and studying. However, this technique does not quantify soil micro biota, as it only encompasses a s

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. Pepper, I. L., & Gerba, C P. 'Contact Slide Assay.' Environmental Microbiology A Laboratory Manual. 2nd ed. Elsevier 19-25 (2004).
  2. Pepper, I. L., Gerba, C. P., & Gentry, T. J. 'Earth Environments.' Environmental Microbiology. 3rd ed. Elsevier 59-88 (2014).
  3. Rossi, G., Ricardo, S., Gesue, G., Stanganelli, M., and Want, T.K. Direct Microscopic and bacteriological investigations of the soil. Soil Science. 41, 52 – 66 (1936).
Tags
Soil MicroorganismsContact Slide AssayMicroscopyVisualizationSoil ChangesEnvironmental StressesRhizosphereAbiotic ComponentsInorganic ParticlesBiotic ComponentsPlant ResiduesRootsOrganic MatterMicroorganismsWater In Soil PoresBacteriaCocciBacilliFilamentous FormsFungal SpeciesYeastMolds

Skip to...

0:00

Overview

1:12

Principles of Soil Microorganisms

2:41

Soil Slide Microcosm Preparation

5:12

Slide Staining and Microscopy

6:47

Microscopy Results

7:32

Applications

9:40

Summary

Videos from this collection:

article

Now Playing

Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy

Environmental Microbiology

41.2K Views

article

Determination of Moisture Content in Soil

Environmental Microbiology

355.3K Views

article

Aseptic Technique in Environmental Science

Environmental Microbiology

121.6K Views

article

Gram Staining of Bacteria from Environmental Sources

Environmental Microbiology

96.0K Views

article

Filamentous Fungi

Environmental Microbiology

54.1K Views

article

Community DNA Extraction from Bacterial Colonies

Environmental Microbiology

28.5K Views

article

Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis

Environmental Microbiology

43.6K Views

article

RNA Analysis of Environmental Samples Using RT-PCR

Environmental Microbiology

40.0K Views

article

Quantifying Environmental Microorganisms and Viruses Using qPCR

Environmental Microbiology

47.4K Views

article

Water Quality Analysis via Indicator Organisms

Environmental Microbiology

28.9K Views

article

Isolation of Fecal Bacteria from Water Samples by Filtration

Environmental Microbiology

37.2K Views

article

Detection of Bacteriophages in Environmental Samples

Environmental Microbiology

40.2K Views

article

Culturing and Enumerating Bacteria from Soil Samples

Environmental Microbiology

180.5K Views

article

Bacterial Growth Curve Analysis and its Environmental Applications

Environmental Microbiology

293.0K Views

article

Algae Enumeration via Culturable Methodology

Environmental Microbiology

13.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved