Sign In

2.8 : Scalar Notation

Scalar notation is a useful method for simplifying calculations involving vectors. When vectors are added or subtracted, their components can be added or subtracted separately using scalar notation. For instance, force, a vector quantity, can be broken down into its x and y components, called rectangular components, and then the magnitude and direction of these components can be determined using trigonometric functions.

Consider a man pulling a rope from a hook in the northeast direction. The magnitude of this applied force vector is denoted as F1. It is resolved into scalar components, represented as F1x along the x-axis and F1y along the y-axis. The expressions for the rectangular components F1x and F1y are obtained using trigonometric functions, as they form a right-angle triangle. Using these components and the Pythagorean theorem, the magnitude of the force F1 can be calculated. The tan inverse of the y component over the x component gives the direction of the force. If another force F2 acts on the same hook from the southeast direction, using a similar method, one can find the magnitude and direction of this force as well.

The resultant force is the algebraic sum of the components of both the forces along the x and y axes. Its magnitude can also be obtained by using the square root of the sum of the squares of its components. This resultant force can either represent the net force on an object or the force required to counteract the other forces.

Scalar notation is useful for calculating forces in different directions and understanding the forces acting on an object. By breaking forces into their rectangular components and then using trigonometric functions, one can determine the magnitude of force and the direction quickly and accurately.

Tags
Scalar NotationVector CalculationsForce VectorRectangular ComponentsTrigonometric FunctionsMagnitudeDirectionPythagorean TheoremResultant ForceNet ForceX axisY axisAlgebraic Sum

From Chapter 2:

article

Now Playing

2.8 : Scalar Notation

Force Vectors

543 Views

article

2.1 : Scalar and Vectors

Force Vectors

997 Views

article

2.2 : Vector Operations

Force Vectors

919 Views

article

2.3 : Introduction to force

Force Vectors

335 Views

article

2.4 : Force Classification

Force Vectors

914 Views

article

2.5 : Vector Addition of Forces

Force Vectors

436 Views

article

2.6 : Two-Dimensional Force System

Force Vectors

708 Views

article

2.7 : Two-Dimensional Force System: Problem Solving

Force Vectors

425 Views

article

2.9 : Cartesian Vector Notation

Force Vectors

531 Views

article

2.10 : Direction Cosines of a Vector

Force Vectors

276 Views

article

2.11 : Three-Dimensional Force System

Force Vectors

1.7K Views

article

2.12 : Three-Dimensional Force System:Problem Solving

Force Vectors

487 Views

article

2.13 : Position Vectors

Force Vectors

554 Views

article

2.14 : Force Vector along a Line

Force Vectors

355 Views

article

2.15 : Dot Product

Force Vectors

201 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved