JoVE Logo
Faculty Resource Center

Sign In

Quantifying the Mechanical Properties of the Endothelial Glycocalyx with Atomic Force Microscopy

DOI :

10.3791/50163-v

February 21st, 2013

February 21st, 2013

12,962 Views

1Department of Biomedical Engineering, University of Rochester

The mechanical characteristics of endothelial glycocalyx were measured by indentation using micron sized spheres on AFM cantilevers. Endothelial cells were cultured in a custom chamber under physiological flow conditions to induce glycocalyx expression. Data were analyzed using a thin film model to determine the glycocalyx thickness and modulus.

-- Views

Related Videos

article

Alginate Microcapsule as a 3D Platform for Propagation and Differentiation of Human Embryonic Stem Cells (hESC) to Different Lineages

article

Quantitative Characterization of Liquid Photosensitive Bioink Properties for Continuous Digital Light Processing Based Printing

article

A Novel Cell Injection Method with Minimum Invasion

article

Soybean Hairy Root Transformation for the Analysis of Gene Function

article

In Vitro Selection of Engineered Transcriptional Repressors for Targeted Epigenetic Silencing

article

Author Spotlight: Advances in Evaluating Human Lung Epithelial Cells' Response to Metal-Organic Frameworks

article

Simple Establishment of a Vascularized Osteogenic Bone Marrow Niche Using Pre-Cast Poly(ethylene Glycol) (PEG) Hydrogels in an Imaging Microplate

article

Author Spotlight: Advancing SERS Technology: Au@Carbon Dot Nanoprobes for Label-Free Analysis and Imaging

article

Author Spotlight: Understanding Chronic Lung Diseases Using 3D Printed Phototunable Hydrogels

article

Author Spotlight: Advancing Eye Physiology Research via a Multi-Channel Flow Culture for Optimal Tissue Maintenance and Real-Time Assessment

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved