JoVE Logo
Faculty Resource Center

Sign In

Multi-timescale Microscopy Methods for the Characterization of Fluorescently-labeled Microbubbles for Ultrasound-Triggered Drug Release

DOI :

10.3791/62251-v

6:02 min

June 12th, 2021

June 12th, 2021

3,211 Views

1Physics of Fluids group, Department of Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, 2BIOS Lab-on-a-Chip group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, 3Department of Biotechnology and Nanomedicine, SINTEF Industry, 4Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 5Department of Health Research, SINTEF Digital, 6Cancer Clinic, St. Olav’s Hospital, 7Department of Physics, Norwegian University of Science and Technology

The presented protocols can be used to characterize the response of fluorescently-labeled microbubbles designed for ultrasound-triggered drug delivery applications, including their activation mechanisms as well as their bioeffects. This paper covers a range of in vitro and in vivo microscopy techniques performed to capture the relevant length and timescales.

Tags

Microbubbles

-- Views

Related Videos

article

Alginate Microcapsule as a 3D Platform for Propagation and Differentiation of Human Embryonic Stem Cells (hESC) to Different Lineages

article

Microbial Control and Monitoring Strategies for Cleanroom Environments and Cellular Therapies

article

Quantitative Characterization of Liquid Photosensitive Bioink Properties for Continuous Digital Light Processing Based Printing

article

Soybean Hairy Root Transformation for the Analysis of Gene Function

article

In Vitro Selection of Engineered Transcriptional Repressors for Targeted Epigenetic Silencing

article

Author Spotlight: Advances in Evaluating Human Lung Epithelial Cells' Response to Metal-Organic Frameworks

article

Methods for Electroporation and Transformation Confirmation in Limosilactobacillus reuteri DSM20016

article

Author Spotlight: Advancing Eye Physiology Research via a Multi-Channel Flow Culture for Optimal Tissue Maintenance and Real-Time Assessment

article

Author Spotlight: Advancing Coral Culture — Creating a Semi-Quantitatively Controlled Microenvironment System to Counter Current Limitations

article

Author Spotlight: EasyFlow – An Economical and Adaptable Perfusion Bioreactor for Large Blood Vessel Culture

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved