Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol detects key methane-cycling genes in South Texas coastal wetlands and visualizes their spatial distribution to enhance understanding of methane regulation and its environmental impacts in these dynamic ecosystems.

Abstract

Coastal wetlands are the largest biotic source of methane, where methanogens convert organic matter into methane and methanotrophs oxidize methane, thus playing a critical role in regulating the methane cycle. The wetlands in South Texas, which are subject to frequent weather events, fluctuating salinity levels, and anthropogenic activities due to climate change, influence methane cycling. Despite the ecological importance of these processes, methane cycling in South Texas coastal wetlands remains insufficiently explored. To address this gap, we developed and optimized a method for detecting genes related to methanogens and methanotrophs, including mcrA as a biomarker for methanogens and pmoA1, pmoA2, and mmoX as biomarkers for methanotrophs. Additionally, this study aimed to visualize the spatial and temporal distribution patterns of methanogen and methanotroph abundance utilizing the geographic information system (GIS) software ArcGIS Pro. The integration of these molecular techniques with advanced geospatial visualization provided critical insights into the spatial and temporal distribution of methanogen and methanotroph communities across South Texas wetlands. Thus, the methodology established in this study offers a robust framework for mapping microbial dynamics in wetlands, enhancing our understanding of methane cycling under varying environmental conditions, and supporting broader ecological and environmental change studies.

Introduction

Coastal wetlands are vital ecosystems that contribute to climate regulation, biodiversity conservation, and water management through processes such as carbon sequestration, evapotranspiration, and methane (CH4) emissions1. These ecosystems, including both freshwater and saltwater wetlands2, are highly productive and act as critical zones for uptake of carbon dioxide (CO2) and capture organic matter from terrestrial and marine environments3,4. The dynamic interactions within these wetlands stimulate microbial CH4 production and con....

Protocol

1. Sample collection

  1. Collect sediment samples using a sediment grab sampler or shovel.
    NOTE: Samples were collected from two stations of three distinct coastal wetlands during cool (October-February, the average temperature is 20 °C) and warm (April-June, average temperature is 27 °C) seasons of 2023 and 2024. A sediment grab sampler was used when samples were collected from coastal freshwater wetlands (Figure 2) and a shovel was used for tidal-i.......

Representative Results

To understand the distribution and abundance of CH4 cycling-related genes (mcrA, pmoA1, pmoA2, and mmoX) in the coastal wetlands of South Texas, the extracted eDNA from each sample was analyzed by cPCR and qPCR. Universal primers for each biomarker were selected to run cPCR from previous studies (Table 1)22,34,35,36,

Discussion

Coastal wetlands are recognized as significant contributors to atmospheric methane, an important greenhouse gas40. Although there have been studies on methane flux and methanogens in wetlands41,42,43, little is known about how methanotrophs operate across different environments or under various management practices, especially in wetlands with fluctuating water levels44. Moreover, .......

Disclosures

The authors have no conflicts of interest to declare.

Acknowledgements

We are thankful to C-REAL members for their assistance in field observation and laboratory analyses.

....

Materials

NameCompanyCatalog NumberComments
0.2 mL PCR tubesThermoFisher ScientificAB0620https://www.thermofisher.com/order/catalog/product/AB0620?SID=srch-srp-AB0620
0.5 mL PCR TubesPromegaE4941https://www.promega.com/products/biochemicals-and-labware/tips-and-accessories/0_5ml-pcr-tubes/?catNum=E4941
10 μL tipsThermoFisher Scientific05-408-187Fisherbrand SureGrip Pipet Tip Racked or Reload System Tips Natural; 10μL; | Fisher Scientific
15 mL centrifuge tubeThermoFisher Scientific14-959-53Ahttps://www.fishersci.com/shop/products/falcon-15ml-conical-centrifuge-tubes-5/p-193301
200 μL tipsThermoFisher Scientific05-408-190Fisherbrand SureGrip Pipet Tip Racked or Reload System Tips Natural; 200μL; | Fisher Scientific
1000 μL tipsThermoFisher Scientific02-707-402https://www.fishersci.com/shop/products/sureone-micropoint-pipette-tips-specific-standard-fit/02707402?gclid=Cj0KCQiAp
NW6BhD5ARIsACmEb
kUsQ9Lu0YIq5i4vWege
17qPdtxIYZyvmJH1cDo
ARuwereO1V4GLz9UaA
lDREALw_wcB&ef_id=C
j0KCQiApNW6BhD5ARI
sACmEbkUsQ9Lu0YIq5i
4vWege17qPdtxIYZyvmJ
H1cDoARuwereO1V4GLz
9UaAlDREALw_wcB:G:s
&ppc_id=PLA_goog_2175
7693617_171052169911_02
707402__715434303113_1555
377385658230343&ev_chn=sh
op&s_kwcid=AL!4428!3!71543430
3113!!!g!2366517300713!&gad_source=1
Applied Biosystem Power SYBR Green Master Mix ThermoFisher Scientific4368577https://www.thermofisher.com/order/catalog/product/4368577
ArcGIS Pro esrihttps://www.esri.com/en-us/arcgis/products/arcgis-pro/overview?srsltid=AfmBOopatJ4
JvHJfscHRcAaDx0Jz5_Jrl8l5
vYkkBvfOqE-uNSsMghN1
CFX Duet Real-Time PCR system Bio-Rad12016265https://www.bio-rad.com/en-us/product/cfx-duet-real-time-pcr-system?ID=97722926-9ed9-16a4-1d83-c92f587e427a
Corning Lambda plus single channel pipettor
volume 0.5-10 μL
Sigma-AldrichCLS4071-1EAhttps://www.sigmaaldrich.com/US/en/product/sigma/cls4071
Corning Lambda plus single channel pipettor volume 100-1000 μLSigma-AldrichCLS4075-1EAhttps://www.sigmaaldrich.com/US/en/product/sigma/cls4075
Corning Lambda plus single channel pipettor volume 20-200 μLSigma-AldrichCLS4074-1EAhttps://www.sigmaaldrich.com/US/en/product/sigma/cls4074
FastDNA spin kit for soilMP Biomedical116560200-CFhttps://www.mpbio.com/us/116560000-fastdna-spin-kit-for-soil-samp-cf?srsltid=AfmBOoqOxxGilzY3IHNIZR
ajegGTr9MoX1oMZUh
3dcbJqe0UvvukY128
Gene copy  calculatorScience Primerhttps://scienceprimer.com/copy-number-calculator-for-realtime-pcr .
High speed benchtop centrifugeThermoFisher Scientific75004241https://newlifescientific.com/products/thermo-scientific-sorvall-st16-high-speed-benchtop-centrifuge-75004241?gad_source=1&gclid=Cj0KCQiApN
W6BhD5ARIsACmEbkVC_-cCIN9j
20TvYq8iDsBlUR5cPK_1_wN
OBEcjMdv-CYVoGCfeOLYaAv
enEALw_wcB
High speed microcentrifugeVWR75838-336https://us.vwr.com/store/product/20546590/null
Lysing Matrix E tube glass bead/ceramic sphere-containing tube
Microcentrifuge tubeThermoFisher Scientific02-681-320https://www.fishersci.com/shop/products/fisherbrand-low-retention-microcentrifuge-tubes-8/02681320?gclid=Cj0KCQiAp
NW6BhD5ARIsACm
EbkWbG4_o3oUiGk
HJPU-_31-CuexDwQ
fmWPnfyhBOf2BHXsy
K3fFW1toaAgJbEALw_
wcB&ef_id=Cj0KCQiAp
NW6BhD5ARIsACmEb
kWbG4_o3oUiGkHJPU-
_31-CuexDwQfmWPnfy
hBOf2BHXsyK3fFW1toa
AgJbEALw_wcB:G:s&ppc
_id=PLA_goog_21757693
617_171052169911_0268
1320__715434303113_10
349826094968484711&ev
_chn=shop&s_kwcid=AL!4
428!3!715434303113!!!g!23
66517300713!&gad_source=1
PCR Master mix PromegaM7502https://www.promega.com/products/pcr/taq-polymerase/master-mix-pcr/?catNum=M7502
Quantiflour ONE dsDNA system PromegaE4871https://www.promega.com/products/rna-analysis/dna-and-rna-quantitation/quantifluor-one-dsdna-system/?gad_source=1&gbraid=0AAAAAD
_rg189yJTY3cxeVqMdu8RPx10
Ma&gclid=CjwKCAjwxNW2BhAk
EiwA24Cm9FUgViPNyWq7UfZL
VeeoroLAZ5JIP6w07RGK_4D0w
oZgAqf-G1XTmxoCxm8QAvD_B
wE&catNum=E4871
Quantus Fluorometer PromegaE6150https://www.promega.com/products/microplate-readers-fluorometers-luminometers/fluorometers/quantus-fluorometer/?catNum=E6150
YSI Pro 2030YSI a xylem brand603174https://www.ysi.com/product/id-p2030/pro2030-kits

References

  1. Xu, T. et al. Wetlands of international importance: Status, threats, and future protection. Int J Environ Res Public Health. 16 (10), 1818 (2019).
  2. Corn, M. L. Deepwater Horizon oil spill: coastal wetland and wildlife impacts and response. DIANE Publishing (2010).
  3. Hendriks, I. E., Sintes, T., Bouma, T. J., Duarte, C. M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Marine Ecology Progress Series. 356, 163-173 (2008).
  4. Krause, S. J. E., Treude, T. Deciphering cryptic methane cycling: Coupling of methylotr....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Environmental Sciences

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved