Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Simplified traumatic brain injury (TBI) models have facilitated the development of therapeutic approaches. This protocol outlines the creation of a stab-wound mouse cortex using needles, enabling the analysis of hemorrhage and inflammation. The stab-wound TBI mouse model offers the advantage of being performed without requiring specialized equipment.

Abstract

Traumatic brain injury (TBI) results from physical damage, often caused by accidents or sports-related incidents. The causes of TBI are diverse, including concussions, brain contusions, hematomas, and skull fractures. To replicate these different causes, various TBI mouse models have been developed using distinct protocols. Physical brain injury leads to both primary and secondary brain injuries, which exacerbate neuronal loss. Primary injury occurs immediately after the damage, often due to hemorrhage, and subsequently triggers secondary injuries, including inflammation around the lesion. Developing a TBI model suitable for assessing hemorrhage extension and inflammatory severity is therefore crucial. This protocol introduces a method for mimicking penetrating brain injury, referred to as the stab-wound TBI mouse model, to study mechanisms of hemorrhage, inflammation, and neuronal loss associated with TBI pathology. This model is created by puncturing the skull and brain with needles and is simple to execute without the need for specialized experimental equipment. Additionally, the minor injury inflicted on the mouse cerebral cortex using a needle does not affect the animal's behavior post-surgery. This feature allows researchers to study the localized effects of brain injury without concerns about broader behavioral consequences. Sample data from stab-wounded mouse cerebral cortices demonstrate the model's effectiveness in assessing blood leakage into the parenchyma, glial activation, and inflammatory cytokine production. Furthermore, this protocol facilitates the evaluation of blood coagulants and anti-inflammatory compounds, aiding in the development of therapeutic agents for TBI.

Introduction

Traumatic brain injury (TBI) is caused by physical damage, often resulting from accidents, including traffic accidents and fall accidents. TBI is classified into two types: penetrating brain injury, which occurs when a sharp object perforates the skull as well as the brain, and closed brain injury, which is caused by violent shaking of the brain inside without a break in the skull1.

The causes of TBI are very diverse, including concussions, brain contusions, hematomas, and skull fractures; therefore, TBI mouse models have been developed using various protocols to replicate these different causes. For example, a repet....

Protocol

All animal care protocols were approved by the Institutional Animal Care and Use Committee of Ochanomizu University, Japan, and were performed in accordance with the guidelines established by the Ministry of Education, Science, and Culture in Japan. Six-week-old adult C57BL/6J female mice (20-25 g) were used; however, this protocol can be applied to other mouse strains, including ICR. All mice were provided ad libitum access to food and water in a clean environment. Details of the reagents and equipment used are listed in the Table of Materials.

1. Stab-wound surgery to the cerebral cortex

  1. Prepa....

Representative Results

To analyze recovery from BBB breakdown, hemorrhage level in the stab-wounded cerebral cortices was assessed by measuring the extravasation level of serum IgG at 1, 3, 5, and 7 days after brain injury. The mouse IgG staining images revealed blood leakage and deposition in the cerebral cortices following brain injury. This was reduced after more than 7 days, as the BBB recovered, and the IgG protein degraded (Figure 2B). IgG extravasation levels were quantified by measuring the intensity of Ig.......

Discussion

Here, a protocol for creating a TBI mouse model using needles was introduced. This protocol allows for a quantitative assessment of recovery from the breakdown of the BBB and inflammation after brain injury using histological and molecular biological approaches. Alternative protocols, such as the repetitive concussive TBI model and weight-drop TBI model, can also be used to analyze BBB breakdown and inflammation. These models replicate TBI pathology under controlled conditions, including specific parameters for impact st.......

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Ayana Hamano, Minori Yamashita, Misaki Endo, Hirono Kobayashi, and Nito Nakahira for helping with the immunohistochemistry and real-time qPCR. This work was supported by the JSPS KAKENHI 19K16122, Takeda Science Foundation, Astellas Foundation for Research on Metabolic Disorders, The Mitsubishi Foundation, Brain Science Foundation, and The Uehara Memorial Foundation to K.H.

....

Materials

NameCompanyCatalog NumberComments
19 G x 1•1/2" needleTERUMONN-1938R 
27 G x 3/4" needleTERUMONN-2719S
anti-GFAP antibodySigma-AldrichG9269
anti-Iba1 antibodyWako019-19741
Atipamezole HydrochlorideNippon Zenyaku KogyoProduct name: Antisedan
Biotin-conjugated mouse IgG antibodyVector LaboratoriesBA-9200
Biotin-conjugated rabbit IgG antibodyVector LaboratoriesBA-1000
Bovine albuminNacalai tesque01860-07
Brain SlicerVisikolBSLM-2
Butorphanol TartrateMeiji Animal HealthProduct name: Vetorphale 5 mg
Confocal microscopeZeissLSM700
Cryostat LeicaCM1520
DABSigma-AldrichD5637-1G
DAPIRoche10236276001
Evans blueWako056-04061
Fluorescent-conjugated rabbit IgG antibodyInvitrogenA-21206
Fluoromount-GInvitrogen4958-02Water-based mounting medium
Isoflurane Inhalation SolutionViatrisv002139
KOD SYBR qPCR MixTOYOBOQKD-201qPCR master mix kit
MedetomidineNippon Zenyaku KogyoProduct name: Domitor
MicroscopeOlympusFSX100
Microvolume spectrophotometerThermoFisher ScientificNanoDrop One
Midazolam 10 mg/2 mLSandoz1124401A1060
MOUNT QUICKDaido SangyoDM01Water insoluble mounting medium
Newborn calf serumGibco16010159
O.C.T. compoundSakura Finetek Japan45833Embedding medium
Peel-A-Way, Truncated 22 mm Square TopTed Pella27118Tissue embedding mold
Peristaltic perfusion pumpATTOSJ-1211
Plate readerFisher ScientificCytation 3
Real-time qPCR machineThermoFisher ScientificStepOne Plus
ReverTra Ace qPCR RT KitTOYOBOFSQ-101cDNA synthesis kit
Superfrost Plus Slide GlassFisher Scientific12-550-15Positive-charged slide glass
Suture with needle AlfresaHT2003NA75-KF2
TRIzol ReagentInvitrogen15596026
VECTASTAIN ABC Standard KitVector LaboratoriesPK-4000Avidin/biotin-based peroxidase system kit

References

  1. Narayan, R. K., et al. Clinical trials in head injury. J Neurotrauma. 19 (5), 503-557 (2002).
  2. Shitaka, Y., et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal ....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Neuroscience

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved