JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

We describe a protocol for deriving lentiviral-based reprogrammed and characterized factor-free human induced pluripotent stem cells and conversion into putative clinical-grade conditions.

摘要

人类诱导多能干细胞(人iPS细胞)可与慢病毒为基础的重编程方法来生成。然而,残留在基因组中的活性转录区潜在的致癌基因的痕迹,限制了其潜在的用于人类治疗应用1使用。此外,来自于干细胞重编程或分化为治疗相关的衍生物的非人类抗原排除来自于一个人的临床背景下2正在使用这些人iPS细胞。在这段视频中,我们提出了一个程序,重新编程和分析因子人iPS细胞无无外源转基因。这些人iPS细胞然后可用于在含有慢病毒的特异性内含子的基因表达异常进行分析。该分析可以使用灵敏的定量聚合酶链反应(PCR),其具有以前用于检测基因表达的3分歧较不敏感的技术的优点进行。全部转化成临床级良好生产规范(GMP)的条件下,使人类的临床意义。我们的协议提供了另一种方法,提供的电流安全港标准将扩大和包括因子无其特征为人类治疗应用,用于导出GMP级人iPS细胞,这应消除任何免疫原性风险因非人抗原hiPSC基衍生物。这个协议是广泛地适用于任何类型的慢病毒重编程的细胞,并提供一个可重复的方法用于将重编程的细胞成GMP级别的条件。

引言

Adult human cells have been shown to be capable of undergoing epigenetic remodeling and reprogramming, as a result of lentiviral-based expression of four key transcription factors4,5. An important advancement in the reprogramming field was the use of a single excisable lentiviral stem cell cassette (STEMCCA), which housed all four reprogramming transcription factors that allowed a precise stoichiometric ratio of protein expression6. Additionally, when transduced in specific multiplicity of infection ranges, STEMCCA can lead to predominantly single genomic integration events during the reprogramming process7. The introduction of an excisable version of STEMCCA, which utilizes Cre/loxP technology followed by excision of the reprogramming vector after derivation of the stem cell line, enabled factor-free human induced pluripotent stem cell (hiPSC) lines to be derived8. Additionally, in order to enhance therapeutic applications of hiPSCs, a novel, quick, and readily applicable methodology for good manufacturing practice (GMP)-grade cell line conversion, from xeno-containing to xeno-free conditions, needed to be implemented. Here, we discuss a relevant methodology that more precisely assesses integrated gene expression differences, specifically when integrated into an intron, and clinical-grade cell conversion into putative GMP conditions.

Previous research has used only relatively insensitive microarray transcriptional analysis to analyze gene expression differences in integrated genes after STEMCCA transduction3,9. Here, we introduce the methodology of sensitive quantitative polymerase chain reaction (PCR) analysis, to further examine integrated gene expression differences. Importantly, current safe-harbor criteria discard hiPSCs that have genes with viral integrations, thus limiting the applicability of these cells for downstream human cellular therapeutics9. We propose that the status quo may change with the use of fully characterized and transgene-free intronically reprogrammed hiPSCs. Additionally, we introduce a robust GMP-grade cell conversion protocol that can be readily applied to a variety of different cell types, which were originally derived under xeno-containing conditions10. This provides significant opportunities for the development of future cell reprogramming experiments, which require clinical-grade conditions to maintain human therapeutic relevance.

These methodologies provide a foundation upon which current safe-harbor criteria may be expanded to include characterized STEMCCA reprogrammed hiPSC lines that maintain a normal gene expression profile after STEMCCA excision from the integrated intron. Also, full conversion into clinical-grade conditions, free from non-human animal antigens, will help to incorporate many more cell types, which have previously been reprogrammed and characterized only in xeno-containing conditions. These methodologies combined, are persuasive grounds for the US Food and Drug Administration (FDA) to consider expanding their limited approval from human embryonic stem cell (ESC)-based therapeutics to hiPSC-based therapeutics11.

We recently detailed the derivation of a factor-free hiPSC line that was fully characterized and converted into putative clinical-grade conditions10. Here, we detail the protocol for hiPSC derivation by utilizing the STEMCCA lentivirus. These stem cells then undergo an excision process followed by gene expression characterization. Finally, the hiPSCs are converted over into GMP-grade conditions by a slow conversion methodology.

研究方案

:此方法是在报道敬畏[10]研究使用。

1.重新编程人类成人皮肤成纤维细胞与STEMCCA

  1. 解冻成人皮肤人成纤维细胞(HUFs),通道4或更低,在37℃水浴中2分钟,小心不要淹没与水的小瓶的顶部。
  2. 放置1毫升浆液人成纤维细胞的成一个15毫升的锥形瓶中,并慢慢地放置4毫升标准福林媒体,预热到37℃的,在一个逐滴的方式,以稀释了二甲亚砜(DMSO)和重新悬浮细胞。
  3. 离心小瓶,在200×g离心,在室温下10分钟。吸出上清液并重新悬浮在媒体的适当体积的细胞创造100000个细胞/ ml的悬浮液,然后加2ml成6孔板的一个孔中,预涂布20分钟用0.2%明胶。
    注:妹妹以及与同等数量的每行条件的单元格都需要接种FOr中细胞计数/感染(MOI)计算的多重性。
  4. 岩石板侧到另一边,并来回均匀地分布在细胞。在湿润的培养箱中孵育过夜,在37℃,5%的CO 2。
  5. 对转导的当天,获得来自姐姐细胞计数(多个)以及(多个)初始福林电镀后约24小时。
  6. 解冻2×10 8 TU,或等效,慢病毒浓缩物(STEMCCA)并稀释至1×10 8 TU / ml,在福林介质。
  7. 转导的细胞在福林媒体10惯性矩比值补充有8微克/毫升的转染试剂。均匀混合导孔孵育过夜,在37℃,5%CO 2的加湿培养箱。
  8. 慢病毒转导后约24小时,切换HUF媒体标准的人多能干细胞(PSC)中。
  9. 天2到6,与人类PSC中每天都在变化的媒体。
  10. 在第6天,板2 0.2%明胶包被的10厘米的板1.5〜1.75×10 6的MEF中HUF媒体12源自CF1小鼠。
  11. 第7天,小心不要离心超过100 XG,利用室温胰蛋白酶升空的第7天的成纤维细胞重新编程,从6孔板和通道之一,同时在1:16的比例,由电镀所有的细胞均匀之间两个10 CM平板,用新鲜人PSC媒体说,前一天被镀的MEF。分发细胞聚集在顺时针螺旋移动并将其放置在37℃,5%CO 2的加湿培养箱中过夜。
  12. 此后,大约播种重新编程的细胞上的MEF,每天48小时后,改变了人类花了PS​​C媒体与新鲜培养基。
  13. 3至4周后,挑单个菌落与典型ESC样形态用21号针头和亚克隆出到24孔板放置约8至10个单独的块特定菌落到各个孔中的0.2%明胶包被的24孔板预种子ED与CF1小鼠在人类PSC中派生的MEF。
    注:扩张拾取菌落后,将菌落必须被表征为多能干通过胚状体的形成和多能性标记物表达的分析在蛋白质水平。

2.矢量整合位点分析和STEMCCA切除

  1. 如所述10分析STEMCCA整合位点由非限制性的线性扩增的PCR。
  2. 后测定,以确保1整合到基因组中,附加STEMCCA的期望区域由抽吸掉旧人类ESC培养基中。然后,结合45微升浓腺Cre的PuroR病毒8微克/毫升的转染剂在3ml标准PSC介质24小时。
  3. 在24小时的温育期后,吸脱混合的病毒上清和与人类的PSC介质洗细胞两次。放置连同2微克/毫升嘌呤霉素的新鲜人类PSC媒体,为期5天,改变媒体每日机智ħ新鲜的媒体和抗生素。
  4. 5天之后,剩余的亚克隆用21号针头的菌落到0.2%明胶包被的孔,在一个12孔板预先涂覆有从CF1mice衍生的MEF和扩大如上详述。
    注:在足够的膨胀,以获得冷冻的储存,转化成无饲养条件是必需的。期望至少95%的干细胞集落的死亡,因为大多数的细胞将不会成功地转导,并会屈从于抗生素以上孵化5天。尽管腺Cre的PuroR集成在0.001-1%的效率进被感染细胞的宿主染色体,reexposing的因子的无菌落的样品,以嘌呤霉素保证100%的细胞死亡会确认没有整合发生13。
  5. 解冻预先等分基底膜基质的一种小瓶在冰上,历时约2小时(制造商的建议),直至基质是液体和稀释出1:30在冷基础培养基的最终浓度。有限公司在孔中的六孔板中,每孔加入1ml期望数目。让坐在在室温下1小时。
  6. 交叉影线(使用18号针,或玻璃或塑料"尖"),至少20至30的菌落从先前井涂上的MEF。要注意减少MEF振奋和板块转移。
    1. 通过一些不同的方法产生的交叉影线装置中,从更复杂的加热,拉,和精加工的玻璃巴斯德吸管的一个开放的火焰,在无菌塑料移液管尖的简单的使用或如在我们的情况下, 21-和/或18-号针头。
  7. 从涂好后孵化吸矩阵。
  8. 通过小心刮擦从旧板卸下菌落件用200微升移液器并小心放置于3ml新鲜组合介质1在基质被覆的板构成。在37℃,5%CO 2的湿润培养箱孵育过夜。改变媒体48小时后传代。
  9. 提取基因组DNA,从后切出,并无饲养转换人iPS细胞,在超过80%汇合,使用商用DNA提取试剂盒。
  10. 适当切除与特异于STEMCCA慢病毒的外源整合的引物进行分析:基因组DNA-hendo-MycS进,5'- acgagcacaagctcacctct-3';的gDNA-hWPRE反向,5'-tcagcaaacacagtgcacacc-3'。重构冻干的引物用PCR级水,以10μM的原液。
  11. 运行的PCR与下列五个步骤的协议:初始变性95℃,3分钟; 35个循环以下每个的:变性在98℃持续20秒,引物退火在62℃持续15秒,并在72℃,15秒延伸;接着在72℃的单一周期最终延伸3分钟。
  12. 通过称出1.5克琼脂糖并放置到50ml 1×Tris-醋酸-EDTA缓冲液使用3%的琼脂糖凝胶。微波直到琼脂糖溶解和发生在DNA凝胶染色为p罗珀稀释,混合,分配适当数量成卡式胶固化1小时,在室温下。
  13. 负载12微升的PCR产物混合,用3微升样染料的成3%的琼脂糖凝胶。运行凝胶30分钟,在80 V.
  14. 可视化用紫外线光对缺少的频带的指示合理切除。

由前及后切除人iPS细胞使用定量PCR定量3.对基因表达的差异

  1. 通过使用商业RNA提取试剂盒提取后切除和无饲养人iPS细胞转化的总RNA。
  2. 反向转录高达1微克的总RNA通过使用商品化试剂盒按照制造商的说明进行操作。使用锚-寡(dT)18和随机六聚体引物。
    注:确保PCR协议是专为超过或少于4 KB基因转录。将需要的任何基因STEMCCA原本整合我要作出特异性引物n要。
  3. 重构冻干引物利用PCR级水至20μM的储备溶液。
  4. 使用5纳克样品每20微升反应的,它包括10微米UPL探针,2倍的LightCycler 480探针万事达,和20μM的正向和反向引物。

4.转换到GMP级条件

  1. 超过到GMP级的条件下转换后切除人iPS细胞的第一天,做一个融合了媒体人组成的联合PSC媒体1(联合媒体1)和临床级良好生产规范(GMP)标准的媒体(联合媒体2 )以80:20的比例。
  2. 抽吸掉旧合并介质1和放置3毫升新合并的介质1和2中,预热的,在80:20比率。每日与此特定比率改变媒体3天。位置细胞放回37℃,5%CO 2的培养箱中培养。
  3. 第4天,使合并的介质1和2,在50:50的比率。吸过旧媒体和replace为预热介质,与组合介质1和2,在50:50的比率。与此特定比率改变媒体3天。位置细胞放回37℃,5%CO 2的培养箱中培养。
  4. 第7天,使该组合介质1和2,在20:80比率。抽吸掉旧的介质,并与预热的介质替换,与组合介质1和2的20:80的比例。与此特定比率改变媒体3天。位置细胞放回37℃,5%CO 2的培养箱中培养。
  5. 在第10天,使合并的介质1和2在0:100的比例。抽吸掉旧的介质,并用预温热培养基替换,与组合介质1和2在0:100的比例。每天都在这个特定的比例发生变化的媒体。电池现在处于完全确定无异物媒体。位置细胞放回37℃,5%CO 2的培养箱中培养。
    注:在这整个转换过程中,常规传代与18号针头是需要保持适当的群体大小和密度。在P计划菌落大小,汇合和分化的基础上assaging细胞每4至5天。
  6. 外套1井在一6孔板具有限定无异物衬底作为制造商推荐的。
  7. 机械通过一个融合的很好,已经转化为无异物介质条件下,从6孔板与18号针头。重要的是,把新的媒体(组合介质2)上的细胞用1×ROCK抑制剂1小时,传代到预调节介质之前。
  8. 吸出合成底物溶液脱新印版,该细胞被转移到。删除所有包含从旧板的干细胞团块媒体和转移到新的板块。
  9. 位置细胞放回37℃,5%CO 2培养箱中培养2天最小物理干扰(理想的是板,一旦进入培养箱,不直接触及以任何方式),以允许最大附件。
    注:电池需要每天更换介质。持续passagin克每4天将是非常重要的。使用21号针头,具有最佳ESC样形态(高核质比)的菌落通道仅部分。这将确保选择正确hiPSC殖民地,将生长良好,并最终产生均匀的殖民地。总时间ESC推导像殖民地是15-20天之间的初始综合媒体更改后。
  10. 由第一交叉线冻结向下GMP级别后切除人iPS细胞的所有菌落通过使用18号针头。升空所有部分用200μl的移液管,并在4℃下5分钟,含有该细胞的所有媒体转移到15毫升锥形瓶中并在离心机200×g离心。
  11. 而将细胞离心,使冷冻媒体包括冷组合介质2等体积的,并与最终DMSO的7.5%浓度的冷冻介质。
  12. 细胞沉淀后,吸出旧媒体,并逐滴重新暂停颗粒与冷冻介质。立即TRansfer到冷冻小瓶并置于-80℃冷冻机中。

5.表征GMP级后切除人iPS细胞

  1. 以确保多潜能标志物的转换后的适当的表达,可使用定量PCR来量化的关键的多能性标记物(SOX2,OCT4Nanog)通过使用表1中的相同的步骤中列出的引物表达如上述在第3步QPCR方法遵循如在步骤3中列出的相同步骤。
  2. 使用流式细胞仪来检测按照试剂盒中列为以前发表10标准条件非人唾液酸Neu5Gc的(N- -glycolylneuraminic酸)。
  3. 轻轻用1×磷酸盐缓冲盐水(PBS)洗涤细胞培养板用的细胞。
  4. 通过使用1倍的解离试剂5分钟,在室温下解离的菌落。
  5. 在步骤5.4的5分钟的温育时间,准备封闭溶液(在所提供盒)通过使0.5%冰冷的PBS阻断剂。
  6. 标签管流式细胞分析的以下一组:未染色; 4',6-二脒基-2-苯基吲哚(DAPI)的DAPI;对照抗体1:200;初级抗体1:200;二次抗体1:200驴抗鸡IgG(H + L);样品的MEF;采样后切除细胞矩阵;和样品后切除细胞合成基质。
  7. 轻轻加入2ml阻断溶液并转让内容到15毫升锥形管中去除细胞聚集来自步骤5.4。离心机在80×g离心5分钟,在4℃。
  8. 用封闭溶液和离心机如在步骤5.7所述洗细胞两次。
  9. 轻轻在100μl阻断与每种抗体的对应稀释体积溶液重新悬浮大约1×10 6个细胞。孵育轻轻摇动,在4℃下进行1小时。
  10. 重复洗涤三次如在步骤5.8。
  11. 再暂停400微升稀释剂卜的细胞沉淀FFER(从盒),用1:对管2,6,7 100的DAPI,及8列出在步骤5.6。
  12. 通过一个40微米的过滤细胞株,并通过流量运行仪。

结果

我们提出了一个协议,用于通过使用所述STEMCCA慢病毒为基础的重编程方法推导临床级因子-自由人iPS细胞。 图1A示出了三个不同的预切hiPSC线代表图象,与上一层的MEF的STEMCCA方法重新编程之后。所述STEMCCA重新编程方法的主要优势在于一致重编程成功由多个科学家实现,在不同的研究组和位置。 图1B给出了后切除逆转录-PCR凝胶,显示出一个特定的亚克隆(2.3),这是完全?...

讨论

我们描述推导因子人iPS细胞无,使他们通过临床未来人类疗法将这些细胞转化为GMP级的条件,下游细胞分化相关的方法论。虽然该协议是广泛地适用于多种细胞类型的,我们选择了重新编程的人皮肤成纤维细胞,因为很容易提取从患者和他们的适用性,以个性化的人类治疗。一旦限制是尽可能补救作为充分分化为临床相关细胞衍生关注图14中,提出了转化为GMP级别的条件将变得更加相关的...

披露声明

James A. Byrne (JAB) and Agustin Vega-Crespo receive research funding from Fibrocell Science, Inc. JAB is a scientific consultant for Fibrocell Science, Inc. No other authors have any competing interests to disclose.

致谢

We would like to thank Patrick C. Lee, Cyril Ramathal, and Saravanan Karumbayaram (SK) for their assistance in performing the iPSC derivation and characterization experiments; Aaron Cooper for performing the iPSC analysis experiments; Vittorio Sebastiano and Renee A. Reijo Pera for directing the initial reprogramming efforts; SK, William E. Lowry, Jerome A. Zack, and Donald B. Kohn for directing the establishment of the UCLA GMP facilities permitting the conversion and characterization of clinical-grade iPSCs; Gustavo Mostoslavsky for providing us with the STEMCCA polycistronic reprogramming vector. This work is based on a research collaboration with Fibrocell Science and the Clinical Investigations for Dermal Mesenchymally Obtained Derivatives (CIDMOD) Initiative to generate safe personalized cellular therapeutics. This work was supported by funding from the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, The Phelps Family Foundation, Fibrocell Science, Inc., and the UCLA CTSI Scholar’s Award to JAB.

材料

NameCompanyCatalog NumberComments
Media and reagents
DMEM/F12 (basal media)Invitrogen (Carlsbad, CA, USA)11330057
Fetal bovine serumInvitrogen16000044
Minimum essential medium (MEM) non-essential amino acids (NEAA), 100xInvitrogen11140050
Glutamax, 100xInvitrogen35050-061
PenStrep, penicillin-streptomycin, 100xInvitrogen15140-122Thaw at 4 °C, aliquot and store at −20 °C
Knockout serum replacementInvitrogen10828028Thaw at 4 °C, aliquot and store at −20 °C
Trypsin/EDTA, 0.5%Invitrogen15400-054Dilute stock out to 0.05% in 1x PBS
Basic fibroblast growth factorGlobalStem (Rockville, MD, USA)GSR-2001Reconstitute to 10 µg/ml stock in 0.1% bovine serum albumin dissolved in 1x PBS and store at −80 °C
β-mercaptoethanolMillipore (Billerica, MA, USA)ES-007-E
Matrigel (basement membrane matrix)BD Biosciences (San Jose, CA, USA)356231Dilute stock Matrigel vial with 10 ml of DMEM/F12 while on ice for a 1:2 dilution. Aliquot and store at −20 °C.
CELLstart (Synthetic Substrate)InvitrogenA1014201
Stemmolecule Y27632Stemgent (Cambridge, MA, USA)04-0012-02
PuromycinInvitrogenA1113802
LightCycler 480 Probes MasterRoche (Basel, Switzerland)4707494001
ProFreeze-CDM Medium/freezing mediumLonza (Basel, Switzerland)12-769E
Dimethyl sulfoxideSigma-Aldrich (St. Louis, MO, USA)D8418
PBSInvitrogen14190-250
100 BP DNA LadderInvitrogen15628019
SYBR Safe DNA Gel Stain 10,000xInvitrogenS33102
AgaroseBio-Rad Laboratories, Inc. (Hercules, CA, USA)161-3101
Gelatin, from porcine skinSigma-AldrichG1890-100GMake stock at 0.2% in PBS, autoclave and store at room temperature.
mTeSR1StemCell Technologies (Vancouver, BC, Canada)5850Combine Supplement 5x with the basic medium, aliquot and store at 4 °C for up to 2 weeks.
Stemedia NutriStem XF/FF Culture MediumStemgent05-100-1AThaw at 4 °C O/N, aliquot and store at 4 °C for up to 2 weeks.
PrimocinInvivoGen (San Diego, CA, USA)ant-pm-1
Accutase (Dissociation Reagent)InvitrogenA1110501
Donkey anti-Chicken IgG AlexaFluor 488Jackson ImmunoResearch (West Grove, PA, USA)703-546-155
Polybrene/transfection agentMilliporeTR-1003-G
Plasticware
12-well platesVWR (West Chester, PA, USA)29442-038
6-well platesVWR29442-042
10-cm platesSigma-AldrichZ688819
18-gauge needleFisher Scientific (Pittsburgh, PA, USA)148265D
21-gauge needleFisher Scientific14-829-10D
Equipment
BD LSRII Flow CytometerKSystem by Nikon (Tokyo, Japan)
BD FACSDiva Version 6.1.3 SoftwareBD Biosciences
Kits
PureLink Genomic DNA Mini KitInvitrogenK182000
KAPA HiFi Hotstart ReadyMix PCR KitKAPA Biosystems (Wilmington, MA, USA)KK2601
High Pure RNA Isolation KitRoche11828665001
Transcriptor First Strand cDNA Synthesis KitRoche4379012001
Sialix anti-Neu5Gc Basic Pack KitSialix (Newton, MA, USA)Basic Pack
Media
Combined media 1StemCell Technologies and StemgentConsists of equal parts mTeSR1 and Nutristem
Combined media 2StemCell Technologies and StemgentConsists of equal parts TeSR2 and Nutristem
HUF MediaDulbecco’s modified Eagle’s medium/F12 [DMEM/F12] supplemented with 10% fetal bovine serum, 1x non-essential amino acids, 1x Glutamax, and 1x Primocin
Human Pluripotent Stem Cell MediaDMEM/F12 supplemented with 20% knockout serum replacement, 1x Glutamax, 1x non-essential amino acids, 1x Primocin, 1x β-mercaptoethanol, and 10 ng/ml basic fibroblast growth factor.
DMEM/F12, Dulbecco’s modified Eagle’s medium/F12; PBS, phosphate-buffered saline.

参考文献

  1. Sommer, C. A., Mostoslavsky, G. The evolving field of induced pluripotency: Recent progress and future challenges. J Cell Physiol. 228, 267-275 (2013).
  2. Lu, H. F., et al. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials. 35, 2816-2826 (2014).
  3. Karumbayaram, S., et al. From skin biopsy to neurons through a pluripotent intermediate under Good Manufacturing Practice protocols. Stem Cells Transl Med. 1, 36-43 (2012).
  4. Mostoslavsky, G. Concise review: the magic act of generating induced pluripotent stem cells: many rabbits in the hat. Stem Cells. 30, 28-32 (2012).
  5. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  6. Sommer, C. A., et al. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells. 27, 543-549 (2009).
  7. Somers, A., et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells. 28, 1728-1740 (2010).
  8. Sommer, C. A., et al. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells. 28, 64-74 (2010).
  9. Papapetrou, E. P., et al. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol. 29, 73-78 (2011).
  10. Awe, J. P., et al. Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Res Ther. 4, (2013).
  11. . Receives FDA Clearance to Begin World's First Human Clinical Trial of Embryonic Stem Cell-Based Therapy. Geron Corporation Press Release. , (2009).
  12. Jozefczuk, J., Drews, K., Adjaye, J. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp. 64, 3810-383791 (2012).
  13. Mitani, K., Kubo, S. Adenovirus as an integrating vector. Curr Gene Ther. 2, 135-144 (2002).
  14. Patterson, M., et al. Defining the nature of human pluripotent stem cell progeny. Cell Res. 22, 178-193 (2012).
  15. Schroder, A. R., et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110, 521-529 (2002).
  16. Hockemeyer, D., et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 29, 731-734 (2011).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

93 STEMCCA GMP PCR

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。