JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出了一个协议分析RNA /蛋白质相互作用。电泳迁移实验(EMSA)是基于RNA的/蛋白复合物和游离RNA在天然凝胶电泳迁移差异上。通过使用放射性标记的RNA探针,RNA /蛋白质复合物可以通过放射自显影进行显现。

摘要

RNA /蛋白质相互作用是转录后调控途径的关键。间的最佳表征的胞质RNA结合蛋白是铁调节蛋白 ,IRP1和IRP2。它们结合到铁几个靶mRNA的非翻译区(UTR)内响应元件(IRES),从而控制的mRNA翻译或稳定性。 IRE / IRP的相互作用已被广泛研究了EMSA。在这里,我们描述了EMSA协议用于分析IRP1和IRP2的IRE结合活性,这可以推广到其他评估RNA结合蛋白的活性。含有一种RNA结合蛋白,或纯化此蛋白质的制备的粗蛋白裂解物,孵育用过量的32 P标记的RNA探针,从而允许形成复合物。肝素加入到排除非特异性蛋白探查结合。随后,将混合物通过在聚丙烯酰胺凝胶非变性电泳分析。免费探头迁移速度快,而所述RNA /蛋白质复合物表现出延迟的流动性;因此,该过程也被称为"凝胶阻滞"或"条带迁移"测定法。电泳结束后,将凝胶干燥和RNA /蛋白质复合物,以及游离的探针,通过放射自显影检测。该协议的总体目标是检测和量化的IRE / IRP和其它RNA /蛋白质相互作用。此外,EMSA也可用于确定特异性所研究的RNA /蛋白质相互作用,结合亲和力和化学计量。

引言

在EMSA最初被开发,研究DNA结合蛋白与靶DNA序列1,2的关联。其原理是类似的RNA /蛋白质相互作用3,这是本文的重点。简言之,RNA被带负电荷并朝向阳极期间非变性电泳聚丙烯酰胺(或琼脂糖)凝胶将迁移。凝胶内的迁移取决于核糖核酸,其正比于它的电荷的大小。相比于自由RNA特异性的蛋白质的RNA的结合改变其流动性,且复杂的迁移变慢。这主要是由于增加的分子量,而且要在电荷和可能的构象的改变。利用RNA标记为探针,可以方便地监控了"凝胶阻滞"或"条带迁移"的。的32 P标记的RNA探针的使用是很常见的,并提供高灵敏度。被检测的RNA /蛋白质复合物和游离RNA的迁移通过放射自显影。缺点是:32 P(14.29天),探针的质量由于辐逐渐恶化的半衰期短,一个放射性许可证和基础设施为放射性工作,以及潜在的生物安全的担忧的要求。因此,已经开发了替代非同位素方法用于标记的RNA探针,例如用荧光团或生物素,其能够检测由荧光或化学发光成像4,5。这些方法的局限性是成本较高并且经常敏感性降低相比同位素标记和非同位素标记物的潜在干扰的RNA /蛋白质相互作用。非变性聚丙烯酰胺凝胶适用于大多数应用EMSA和常用。有时,琼脂糖凝胶可能造成的大型复合物的分析,另一种选择。

EMSA的主要优点在于,它结合了简单,灵敏度和鲁棒性4 </ SUP>。该测定可以在几个小时内完成,并且不需要复杂的仪器。 RNA /蛋白质相互作用可通过EMSA在浓度低至0.1纳米或更小进行检测,并广泛的结合条件内(pH为4.0 - 9.5,单价盐浓度1 - 300毫米,而温度0 - 60℃)。

RNA /蛋白质复合物的形成,也可以由滤波器结合测定研究。这是基于对RNA /蛋白质复合物中的硝化纤维过滤器中的保留一个简单,快速,和便宜的程序,而自由RNA探针穿过6。相比EMSA,它的情况下将RNA探针含有多个结合位点,或粗提取物包含一个以上的RNA结合蛋白结合的探针在同一地点的限制。而多的RNA /蛋白质相互作用会逃过检测由滤波器结合测定中,它们可以容易地通过EMSA观察。在某些情况下,可视化前夕n个可能时两个RNA /蛋白质复合物共迁移(例如,人类IRP1 / IRE和IRP2 / IRE复合物)中,加入的抗体对RNA结合蛋白的EMSA反应之一,在凝胶上产生进一步的延迟( "超迁移")7。

在EMSA已广泛用于研究IRP1和IRP2,这是铁代谢8-10转录后调节器。它们的工作由几个11的mRNA的非编码区中结合IRES,系统发育保守的发夹结构。 IRE有时首先在编码铁蛋白12转铁蛋白受体1(TFR1)13,铁贮存和吸收,分别为蛋白质的mRNA的发现。稍后,IRE有时被发现在红细胞特异性氨基乙酰丙酸合成酶 (ALAS2)14,线粒体乌头15,铁转运蛋白16, 二价金属转运蛋白1(DMT1)17,缺氧诱导因子2 >α(HIF2α)18,以及其他的mRNA 19-21。原型H和L-铁的mRNA包含在其5 1 IRE'UTR,而TFR1基因包含在其3多IRE有时'UTR。 IRE / IRP的相互作用特异性抑制铁蛋白mRNA的翻译在空间上阻断43S核糖体亚基及其相关;此外,他们稳定TFR1反对内切裂解的mRNA。 IRP1和IRP2份额广泛的序列相似性,并表现出铁饥饿细胞高IRE结合活性。在铁充足的细胞,IRP1组装转换它到胞质乌头在其IRE结合活性为代价一立方烷的Fe-S簇,而IRP2经历蛋白酶体降解。因此,IRE / IRP相互作用取决于蜂窝铁状态,但也受其它信号,如H 2 O 2,一氧化氮(NO)或缺氧。在这里,我们描述了协议,以评估IRE-结合活性从原油细胞和组织的提取物用EMSA。我们使用的是通过体外转录从质粒DNA模板(I-12.CAT),其中IRE序列由最初引入有义方向的T7 RNA聚合酶位点下游生成一个32 P-标记的H-铁蛋白的IRE探针克隆退火合成寡核苷酸22。

研究方案

小鼠实验程序批准了麦吉尔大学(协议4966)的动物护理委员会。

1.准备从培养细胞蛋白提取物

  1. 用10毫升冰冷的磷酸盐缓冲盐水(PBS)洗两次培养的细胞。
  2. 刮贴壁细胞与任一橡皮或塑料细胞刮棒在1ml冰冷的PBS,转印悬浮到1.5ml微量离心管中。
  3. 旋在微量离心5分钟,于700×g离心,于4℃。吸PBS。
  4. 加入100微升冰冷的细胞质裂解缓冲液( 见表1)每10 7个细胞,并吸取向上和向下。
  5. 在冰上孵育20分钟。
  6. 旋,在4℃下以全速10分钟在微量。
  7. 丢弃沉淀。上清转移到新的1.5 ml离心管,并保持在冰上。
  8. DET使用Bradford法23 - (10微克/微升通常1)貂皮蛋白浓度。
  9. 等分试样并储存细胞提取物在-80℃下直到使用。

2.准备从小鼠肝脏和脾脏蛋白提取物

  1. 安乐死鼠标使用CO 2吸入。
  2. 奠定安乐死的动物在一块干净的纱布在解剖板。打开用剪刀腹部。
  3. 解剖肝脏和脾脏用剪刀和镊子,并冲洗在大约50毫升的冰冷的PBS各组织。
  4. 立即切割组织切成小块,用手术刀(例如:约1 - 2 立方毫米)。
  5. 无延迟,放在新鲜冻存管组织的片,然后捕捉冻结他们在液氮。商店管理单元冷冻组织等分在-80℃下直到使用。
  6. 在0.25 - (2 mm 3的大约1) - 0.5毫升匀化一片冷冻组织的冰冷细胞质裂解缓冲液( 见表1)用组织匀浆10秒。
  7. 转移匀浆至1.5 ml离心管,并冰浴20分钟。
  8. 旋,在4℃下以全速10分钟在微量。
  9. 放弃颗粒和转移上清到新的1.5 ml离心管。保持在冰上。
  10. 测定蛋白浓度-使用Bradford测定法23(通常为1 10微克/微升)。
  11. 等分试样并储存细胞提取物在-80℃下直到使用。

3.准备放射性标记IRE-探头

  1. 通过在37℃下用限制性核酸内切酶XbaⅠ位(每质粒微克1 U)的IRE序列的下游其裂解温育1小时进行线性化的含有质粒IRE I-12.CAT 22。将线性化质粒将被用作模板的体外转录。
  2. 设置一个中的 n 体外在20微升的总体积的转录反应。使用表2中所示的储液,并添加1微升线性质粒模板,4微升的转录缓冲液1微升混合物中ATP / CTP / GTP混合,加入10μl[α-32 p] -UTP,2微升二硫苏糖醇,1微升RNA酶抑制剂和1μlT7 RNA聚合酶。通过上下吹打混匀。
  3. 孵育在40℃下1小时24。

4.净化放射性标记IRE-探头

  1. 加入1微升的0.5M EDTA,pH为8混音通过上下抽吸终止的体外转录反应。
  2. 添加10微升10毫克/毫升的tRNA,作为载体更好沉淀。通过上下吹打混匀。
  3. 添加82.5微升的3M乙酸铵。涡旋混合。
  4. 添加273微升乙醇。涡旋混合。
  5. 静置在室温5分钟。
  6. 在微型在RT旋转10分钟以全速。弃去上清液。
  7. 洗涤沉淀用100μl的70%乙醇。
  8. 在微型在RT旋转10分钟以全速。弃去上清液。
  9. 空气干燥沉淀10分钟。
  10. 在100μl双蒸重悬沉淀,预先高压灭菌 H 2 O.
  11. 量化放射性用液体闪烁计数器,等分试样的放射性标记的探针的IRE并储存在-80℃直到使用。冷冻等分试样可用于长达3周。

5.准备EMSA原生聚丙烯酰胺凝胶

  1. 通过使用1.5毫米垫片和梳组装凝胶(16×16厘米)。
  2. 以制备6%非变性聚丙烯酰胺凝胶,使用表3中所示的储备溶液混合7.5毫升40%的丙烯酰胺:双丙烯酰胺,加入5ml 5×TBE和37.5毫升双蒸H 2 O.
  3. 加入0.5毫升10%的新制备的过硫酸铵(APS)和25微升四甲基乙二胺(TEMED)。
  4. 立即倒入丙烯酰胺溶液的凝胶,并让它聚合。等待大约30分钟。
  5. 与凝胶组装电泳装置中,填充罐用0.5X TBE并连接电源。

6.凝胶电泳迁移分析

  1. 在10微升的总体积稀释25微克从细胞或组织与细胞质裂解缓冲液( 表1)的蛋白提取物(低蛋白质浓度也可以使用)。保持在冰上。如果需要的话,加入1微升1:4稀释的2-巯基乙醇(2-ME),以激活休眠IRP1(终浓度:2%)25。
  2. 稀释放射性IRE探头双蒸H 2 O来200000 CPM /μL,热在95℃变性℃1分钟,并冷却在RT至少5分钟。
  3. 成立EMSA反应通过加入1微升放射性IRE探针与蛋白质提取物。
  4. 孵育20分钟,在RT。
  5. 加入1微升50毫克/毫升肝素的反应(以抑制非特异性蛋白相互作用与探针9),并继续孵育另外10分钟。分装肝素在-80℃下储备溶液(50毫克/毫升),并存储。
  6. 当使用放射性标记的长探针(> 60个核苷酸),加入1微升RNA酶T1(1U /微升),孵育10分钟,在室温,以减少非特异性蛋白结合到探针,并允许更好地分离的RNA /蛋白质的电泳过程中的复杂。
  7. 加入3微升加样缓冲液(80%甘油+溴酚蓝),混合和负载上的6%非变性聚丙烯酰胺凝胶。
  8. 运行凝胶在130 V(5伏/厘米)60分钟。
  9. 牛逼转输的凝胶到大滤纸和干燥。
  10. 暴露于膜和开发放射自显影。暴露时间的范围可以从1小时(或更少)至O / N。

结果

放射标记的IRE探针制备,如在第3和第4的协议的说明。所述探针的序列为5'-GGGCGAAUUC GAGCUCGGUA CCCGGGGAUC CUGÇUUCAAÇAGUGC UUGGA CGGAUCCU-3';粗体的核苷酸代表一个未配对的C残基和环,这是至关重要的IRE特征。探针的比放射性为4.5×10 9的cpm / RNA微克。

评估铁扰动对IRE结合活性的影响,鼠的RAW264.7巨噬细胞不进行治疗,或者与血红素(铁源)或去铁胺(铁螯合剂)...

讨论

在此,我们描述了已开发研究IRP1和IRP2的IRE结合活动的协议,并且我们显示代表性数据。通过使用不同的探针,该协议也可以被用于其它RNA结合蛋白的研究调整。一个关键步骤是探针的大小。用法长探针,这是共同的时,确切的结合位点是未知的,可能会导致的RNA /蛋白质复合物不不同迁移比游离的RNA。在这种情况下,最好是通过用RNA酶T1( 步骤6.6)处理以去除未结合的RNA。探针的质?...

披露声明

The authors declare that they have no competing financial interests.

致谢

This work was supported by a grant from the Canadian Institutes for Health Research (MOP-86514).

材料

NameCompanyCatalog NumberComments
leupeptinSIGMAL2884
PMSFSIGMA78830
BioRad Protein AssayBIORAD500-0006
T7 RNA polymeraseThermoscientificEPO111
RNase InhibitorInvitrogen15518-012
UTP [alpha-32P]Perkin-ElmerNEG507H
Scintillation liquidBeckman Coulter141349
heparinSIGMAH0777
Rnase T1ThermoscientificEN0541
Name of the Equipment
Tissue RuptorQiagen9001271
Scintillation counterBeckman CoulterLS6500
Protean II xi CellBIORAD165-1834
20 wells combsBIORAD165-18681.5 mm thick
1.5 mm spacersBIORAD165-1849
PowerPacBIORAD164-5070

参考文献

  1. Fried, M., Crothers, D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505-6525 (1981).
  2. Garner, M. M., Revzin, A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9, 3047-3060 (1981).
  3. Ryder, S. P., Recht, M. I., Williamson, J. R. Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods Mol Biol. 488, 99-115 (2008).
  4. Hellman, L. M., Fried, M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2, 1849-1861 (2007).
  5. Luscieti, S., et al. Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome. Orphanet J Rare Dis. 8, 30 (2013).
  6. Rio, D. C. . Filter-binding assay for analysis of RNA-protein interactions. 2012, 1078-1081 (2012).
  7. Wang, J., et al. Iron-mediated degradation of IRP2: an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol. Cell. Biol. 24, 954-965 (2004).
  8. Leibold, E. A., Munro, H. N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5' untranslated regions of ferritin heavy- and light-subunit mRNAs. Proc. Natl. Acad. Sci. USA. 85, 2171-2175 (1988).
  9. Haile, D. J., Hentze, M. W., Rouault, T. A., Harford, J. B., Klausner, R. D. Regulation of interaction of the iron-responsive element binding protein with iron-responsive RNA elements. Mol. Cell. Biol. 9, 5055-5061 (1989).
  10. Mueller, S., Pantopoulos, K. Activation of iron regulatory protein-1 (IRP1) by oxidative stress. Methods Enzymol. 348, 324-337 (2002).
  11. Wang, J., Pantopoulos, K. Regulation of cellular iron metabolism. Biochem J. 434, 365-381 (2011).
  12. Hentze, M. W., et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science. 238, 1570-1573 (1987).
  13. Casey, J. L., et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 240, 924-928 (1988).
  14. Dandekar, T., et al. Identification of a novel iron-responsive element in murine and human erythroid d-aminolevulinic acid synthase mRNA. EMBO J. 10, 1903-1909 (1991).
  15. Gray, N. K., Pantopoulos, K., Dandekar, T., Ackrell, B. A. C., Hentze, M. W. Translational regulation of mammalian and drosophila citric acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. USA. 93, 4925-4930 (1996).
  16. McKie, A. T., et al. A novel duodenal iron-regulated transporter IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell. 5, 299-309 (2000).
  17. Gunshin, H., et al. Cloning and characterization of a mammalian protein-coupled metal-ion transporter. Nature. 388, 482-488 (1997).
  18. Sanchez, M., Galy, B., Muckenthaler, M. U., Hentze, M. W. Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat. Struct. Mol. Biol. 14, 420-426 (2007).
  19. Sanchez, M., et al. Iron regulation and the cell cycle: Identification of an iron-responsive element in the 3'-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J. Biol. Chem. 281, 22865-22874 (2006).
  20. Santos, C. O., et al. An iron responsive element-like stem-loop regulates alpha-hemoglobin-stabilizing protein mRNA. J Biol Chem. 283, 26956-26964 (2008).
  21. Liu, Z., et al. Siderophore-mediated iron trafficking in humans is regulated by iron. J Mol Med (Berl. 90, 1209-1221 (2012).
  22. Gray, N. K., et al. Recombinant iron regulatory factor functions as an iron-responsive element-binding protein, a translational repressor and an aconitase. A functional assay for translational repression and direct demonstration of the iron switch. Eur. J. Biochem. 218, 657-667 (1993).
  23. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 (1976).
  24. Testa, U., et al. Differential regulation of iron regulatory element-binding protein(s) in cell extracts of activated lymphocytes versus monocytes-macrophages. J. Biol. Chem. 266, 13925-13930 (1991).
  25. Hentze, M. W., Rouault, T. A., Harford, J. B., Klausner, R. D. Oxidation-reduction and the molecular mechanism of a regulated RNA-protein interaction. Science. 244, 357-359 (1989).
  26. Meyron-Holtz, E. G., et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 23, 386-395 (2004).
  27. Huang, F. W., Pinkus, J. L., Pinkus, G. S., Fleming, M. D., Andrews, N. C. A mouse model of juvenile hemochromatosis. J. Clin. Invest. 115, 2187-2191 (2005).
  28. Sebastiani, G., Pantopoulos, K. Disorders associated with systemic or local iron overload: from pathophysiology to clinical practice. Metallomics. 3, 971-986 (2011).
  29. Galy, B., Ferring, D., Hentze, M. W. Generation of conditional alleles of the murine iron regulatory protein (IRP)-1 and -2 genes. Genesis. 43, 181-188 (2005).
  30. Gkouvatsos, K., et al. Iron-dependent regulation of hepcidin in Hjv-/- mice: Evidence that hemojuvelin is dispensable for sensing body iron levels. PLoS ONE. 9, 85530 (2014).
  31. Goforth, J. B., Anderson, S. A., Nizzi, C. P., Eisenstein, R. S. Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA. 16, 154-169 (2010).
  32. Gopinath, S. C. Mapping of RNA-protein interactions. Anal Chim Acta. 636, 117-128 (2009).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

94 RNA mRNA mRNA IRE IRP1 IRP2

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。