JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

The goal of this protocol is to show an effective technique to isolate whole, intact vitreous core and cortex from post mortem enucleated porcine eyes.

摘要

The authors propose an effective technique to isolate whole, intact vitreous core and cortex from post mortem enucleated porcine eyes. While previous studies have shown the results of such dissections, the detailed steps have not been described, precluding researchers outside the field from replicating their methods. Other studies harvest vitreous either through aspiration, which does not maintain the vitreous structure anatomy, or through partial dissection, which only isolates the vitreous core. The proposed method isolates the whole vitreous body, with the vitreous core and cortex intact, while maintaining vitreous anatomy and structural integrity. In this method, a full thickness scleral flap in an enucleated porcine eye is first created and through this, the choroid tissue can be separated from the sclera. The scleral flap is then expanded and the choroid is completely separated from the sclera. Finally the choroid-retina tissue is peeled off the vitreous to leave an isolated intact vitreous body. The proposed vitreous dissection technique can be used to study physical properties of the vitreous humor. In particular, this method has significance for experimental studies involving drug delivery, vitreo-retinal oxygen transport, and intraocular convection.

引言

该方法的目的是对细节的技术以分离一个整体,完好玻璃体,与玻璃体芯和皮层完好,从尸体眼睛,对于vitreodynamic分析的目的。作为玻璃体生理学领域已经成长,多学科的研究者,如流体力学研究人员,正在研究玻璃体1的物理和力学性能。为此,有必要对细节的技术以分离的整体,完好玻璃体,以帮助多学科研究。

塞巴格 23进行优雅整个玻璃体解剖上人尸体眼睛和显示结果的说明。然而,所使用的技术中的细节和非专家没有描述将不能够独立复制的方法。其他研究也收获了使用简单的方法,如吸入或局部解剖尸体眼玻璃体,这两者不会导致一个整体,完好玻璃体。 Gisladottis 4和Xu 5探讨通透性玻璃体从尸眼收获。然而,由于玻璃体提取无法进行了说明,人们认为它们吸出玻璃体用注射器。瓦 6更进一步通过描述分离兔眼玻璃体液与手术技术的方法。然而,这种方法会导致在刚玻璃体芯的隔离,而不是玻璃体皮质。 Skeie 7后举办的玻璃体到4个独特的区域和优雅描述的方法来剖析出各个部分进行分析。这种技术然而,这并不导致完好玻璃体作为一个整体。

目前的技术,以方便,目前仅在尸眼进行的生物物理实验。以前的方法,如所描述的波夫,是有限的,因为1)无完全隔离整个玻璃体,2)收获玻璃体芯和皮层匀浆,3)玻璃体解剖结构不能维持,或4)解剖技术没有充分研究人员在其他领域详述用于复制。此外,由于巩膜和脉络膜,玻璃体的可视化的不透明度在完整眼球被限制。这限制了可以在整个眼内进行的测量的精度和可行性。此外,周边玻璃体的解剖结构可混淆的玻璃体的生化和物理性能的研究。

在最近几年,玻璃体科学的身体就突飞猛进和有理由认为整个玻璃体具有不同的性质不是其各个部分。有一个在为vitreodynamics researc调查玻璃体的物理,力学,化学性能日益增长的兴趣H,其中有应用在临床医学如药物输送,玻璃体内氧8玻璃体切割术。药理vitreodynamics,它使用药理物质来操纵玻璃体,可用于改善玻璃体成果9。生物力学特性用于模拟玻璃体流体流,其可以被用来改善玻璃体内给药技术10-12。玻璃体的各部分的物理性能是至关重要的理解玻璃体视网膜氧迁移13。所提出的玻璃体切除术可用于研究完整玻璃体的各种属性。它使台式实验与更好的可视化进行整体​​上的,完整的玻璃体。

总之,目前的方法对于玻璃体的研究要么没有充分描述的,或导致不完全的隔离玻璃体芯和皮层。因此,有必要以执行电子在一个透明的眼睛模型xperiments同时保持存在于尸体眼睛玻璃体的解剖结构。

研究方案

所有的眼睛摘除从屠宰场获得的所有实验均按照生物安全制度执行法律。

  1. 安全摘除下来的眼睛在表面上。通过将组织通过针眼部周围多余的组织和确保它分解成一个泡沫塑料板做这个。
  2. 解剖和分离眼结膜perilimbal。
    1. 用细镊子(0.3钳)和microscissors(韦斯科特剪刀)切开结膜角膜缘,并直言不讳地剖析它关闭巩膜。沿着切开角膜缘结膜为钝性分离进入允许进一步解剖。
    2. 删除结膜一路眼睛周围的(360度)暴露尽可能多巩膜越好。
      注:这是有帮助的留下少量的结膜,方便程序的剩余时间内行了吧眼睛的手术针或镊子。
  3. 沿着创建一个全层巩膜瓣眼(手术刀刀片69)的一面。
    1. 使巩膜切口平行于角膜缘和3mm后至角膜缘一约5毫米乘轻轻切成巩膜用手术刀(手术刀刀片11),直到暗着色脉络膜是可见的。小心不要切割脉络膜本身。
    2. 沿着巩膜和脉络膜之间的平面小心解剖,或者用剪刀(使用钝器解剖)或用手术刀,直到它可以通过推脉络膜轻轻向内放大这些组织之间的潜在空间。
    3. 进行另一个巩膜切口垂直于第一巩膜切口尖锐microscissors,创建一个T形切口。
    4. 然后继续在圆周方式直截了当地解剖到从底层脉络膜去除巩膜组织和轻轻地从巩膜推脉络膜远如上所述。
    5. 根据需要扩大巩膜瓣。
      1. 轻轻钝解剖脉络膜远离巩膜在整个过程中。
      2. 放大襟翼直到作出垂直于角膜缘的切口到达视神经和切口平行于角膜缘的至少三分之一的眼周(45°)的。
      3. 使用巩膜瓣作为杠杆的过程中钝性分离操纵眼睛的来源。在瓣反牵引力更容易为钝性剥离。
    6. 在重复其他巩膜瓣上一步。
  4. 切掉巩膜瓣,露出大面积脉络。
  5. 继续在步骤3的眼部周围的圆周(360度)所作的切口。
  6. 除去剩余的脉络膜视网膜组织。
    1. 在暴露的区域,用棉尖轻轻刷过脉络膜视网膜组织剩余。另外,抢轻轻用钳子组织剥开下面的玻璃体。
    2. 如果有必要做一个切口进入脉络膜ST从视神经arting。然后剥离脉络膜轻轻揭露视网膜和玻璃体皮质。
  7. 继续钝解剖脉络远离巩膜,然后剥离脉络膜获得整体,完整的玻璃。
  8. 使用附连到角膜巩膜缘定位在所需的位置,整个玻璃体。此时,玻璃体附着到前巩膜和透镜。
  9. 钝从巩膜的内部解剖玻璃体,围绕透镜,清除所有巩膜。
  10. 用生硬的工具,舀镜头远离玻璃,如果需要的话。使用示例各种vitreodynamic实验。
    1. 放置样品与暴露于空气中的已知表面积的玻璃烧杯中。放置氧敏感探针在样品的边缘。使用一个微型机械手将探头移动到一个已知距离(r)到样品。
    2. 使用菲克定律获得的理论扩散方程。随着DATA收集在步骤10.1,获得实验扩散系数/反应项等。

结果

以下协议会导致一个成功的玻璃体切除与芯和皮层( 图3)保持不变。这是从剩余片视网膜附着于玻璃体皮质明显。完好整个玻璃体可以以多种方式对特定vitreodynamic实验中使用。在我们的情况下,氧气在完整玻璃体的扩散速度和它的相应的时间常数进行了研究( 图2)。玻璃体被解剖用我们的方法(芯和皮层)置于与已知的暴露表面积的玻璃烧杯中。这是相比于玻璃体被?...

讨论

有迹象表明,必须在玻璃体切除认真执行两个关键步骤。步骤3中,创建完整厚度巩膜瓣,关键的是要在整个清扫。应注意建立的全部厚度巩膜瓣时不切入脉络膜。另一个关键的步骤是解剖远离脉络膜巩膜。这一步必须谨慎进行,以防止在创建从中可以玻璃洒出脉络膜多个孔。有一种方法来修改协议,仍然完好无损解剖全玻璃体。步骤6可以被延迟,直到步骤8的脉络膜可以在末端被除去后玻璃体组?...

披露声明

The authors have nothing to disclose.

致谢

The authors acknowledge the following funding sources, Whittier Foundation, Harrington Foundation, National Institutes of Health and Research to Prevent Blindness.

材料

NameCompanyCatalog NumberComments
0.3 forcepsStorz OpthalmicsE1793
Westcott Tenotomy Scissors Curved RightStorz OpthalmicsE3320 R
Scalpel Handle No. 3VWR25607-947
Scalpel Blade, #11, for #3 HandleVWR470174-844

参考文献

  1. Siggers, J. H., Ethier, C. R. Fluid Mechanics of the Eye. Annual Review of Fluid Mechanics. 44 (1), 347-372 (2012).
  2. Sebag, J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 225 (2), 89-93 (1987).
  3. Grignolo, A. Fibrous components of the vitreous body. AMA Arch Ophthalmol. 47 (6), 760-774 (1952).
  4. Gisladottir, S., Loftsson, T., Stefansson, E. Diffusion characteristics of vitreous humour and saline solution follow the Stokes Einstein equation. G Graefes Arch Clin Exp Ophthalmol. 247 (12), 1677-1684 (2009).
  5. Xu, J., Heys, J. J., Barocas, V. H., Randolph, T. W. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm Res. 17 (6), 664-669 (2000).
  6. Watts, F., Tan, L. E., Wilson, C. G., Girkin, J. M., Tassieri, M., Wright, A. J. Investigating the micro-rheology of the vitreous humor using an optically trapped local probe. Journal of Optics. 16 (1), 015301 (2014).
  7. Skeie, J. M., Mahajan, V. B. Dissection of human vitreous body elements for proteomic analysis. J Vis Exp. (47), e2455 (2011).
  8. Abdallah, W., Ameri, H., et al. Vitreal oxygenation in retinal ischemia reperfusion. Invest Ophthalmol Vis Sci. 52 (2), 1035-1042 (2011).
  9. Goldenberg, D., Trese, M. Pharmacologic vitreodynamics: what is it? Why is it important. Expert Review of Ophthalmology. 3 (3), 273-277 (2008).
  10. Choonara, Y. E., Pillay, V., Danckwerts, M. P., Carmichael, T. R., du Toit, L. C. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci. 99 (5), 2219-2239 (2010).
  11. Balachandran, R. K., Barocas, V. H. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 25 (11), 2685-2696 (2008).
  12. Smith, C. a., Newson, T. a., et al. A framework for modeling ocular drug transport and flow through the eye using micro-CT. Phys Med Biol. 57 (19), 6295-6307 (2012).
  13. Quiram, P. A., Leverenz, V. R., Baker, R. M., Dang, L., Giblin, F. J., Trese, M. T. Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina. 27 (8), 1090-1096 (2007).
  14. Shui, Y., Holekamp, N. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 127 (4), 475-482 (2009).
  15. Burk, S. E., Da Mata, A. P., Snyder, M. E., Schneider, S., Osher, R. H., Cionni, R. J. Visualizing vitreous using kenalog suspension. J Cataract Refract Surg. 29 (4), 645-651 (2003).
  16. Spaide, R. Visualization of the Posterior Vitreous with Dynamic Focusing and Windowed Averaging Swept Source Optical Coherence Tomography. Am J Ophthalmol. S0002-9394 (14), 00537-00536 (2014).
  17. Domalpally, A., Gangaputra, S., Danis, R. P. . Diseases of the Vitreo-Macular Interface. 21, 21-27 (2014).
  18. Stocchino, R., Repetto, A., Cafferata, C. Experimental investigation of vitreous humour motion within a human eye model. Phys Med Biol. 50 (19), 4729-4743 (2005).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

99 vitreodynamics

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。