Lipid polyesters constitute the structural components of two cell wall modifications, the plant cuticle and suberin-containing diffusion barriers. In this video, we describe a method to depolymerize cutin from whole delipidated leaves. The method can be applied to investigating mutants compromised in either cutin or suberin biosynthesis.
Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function.
维管束植物依靠充当植物组织和外部环境之间的防水屏障外层。这些亲脂性的细胞壁相关结构限制病原体感染和调节的气体,水和溶解的物质的被动转运进出植物组织1。这种障碍是植物表皮,一个synapomorphic结构独特的植物2,以及不同的含软木脂扩散壁垒。角质层是由表皮细胞经由果胶层上的细胞壁3-5的外侧合成并结合到它们的亲油性层。它包住高等植物的主天线器官,用作植物组织和环境之间的一个重要的接口。
角质,角质层的结构基体,和软木脂与溶剂萃取的蜡2,4相关联的两个不溶甘油脂聚酯。这些聚合物升ipids是由饱和和不饱和脂肪酸衍生物的且都是结构上和功能上类似。然而,它们是可区分由在化学组成和沉积点特性的差异。
软木脂是一种脂族聚酯位于形成次生壁一定的外部和内部组织的细胞壁内。 Suberized组织包括根periderms,块茎和树皮,根内皮层,种皮层和愈合伤口2。不像角质,所述木栓质聚酯通常含有醇,饱和的和单不饱和二羧酸,和相当大的比例非常长链的单体的(C≥20)。
角质是在维管植物6中最丰富的脂类聚酯,和由甘油和C 16 -C 18交换的脂肪酸衍生物,如羟基和羟基取代的环氧脂肪酸4。而角质聚合物的组合物跨越维管种类而异,最主要主单体为10,16二羟基16:0,18羟基-9,10-环氧18:0,和9,10,18三羟基18:0脂肪酸。有趣的是,拟南芥属叶和茎角质主要由18:2的二羧酸7,8。
植物表皮也厚度呈现出相当大的变化,从几纳米到几微米9。由于角质层隔离是费力和耗时的步骤,特别是对于非常薄的叶子表皮诸如拟南芥 8,绕过角质层分离方法已经开发和验证7,8。在这里,我们描述了一个详细的协议来研究角质的拟南芥叶片由甲醇钠(甲醇钠)催化的解聚和随后的气相色谱/质谱(GC / MS)分析该单体组合物。该协议提供了一个强大的方法测定共mposition在全脱脂组织的植物脂肪聚酯,并已被改编自先前报告协议7,10,11。整个组织样品是第一匀浆,彻底去脂,除去溶剂萃取的脂质包括表皮和epicuticular蜡,膜脂,和三酰基甘油。细胞壁富集残基,然后由甲醇钠催化的甲醇分解解聚成其组成甲酯单体。脂肪酸甲基酯被提取在酸化时,并衍生以得到其相应的三甲基甲硅烷基或乙酰基的衍生物。衍生的残基是高度挥发性的,并且可以从在适当温度下用气相色谱柱洗脱而不会在GC / MS分析改变其结构构象。
注:该协议是改编自博纳等人。 (2004),Molina等人。 (2006年),李等人。 (2013年)7,10,11。步骤1-5 总结于图1。
1.组织脱脂
注意:一定要清洗所有的玻璃器皿和瓶盖用氯仿,让干在通风橱,使用前。
注意:执行组织均匀化,并在通风橱中的所有溶剂转移步骤;总是穿着白大褂,手套和防溅安全护目镜,避免与化学物质直接接触,并保护样品免受污染。
2.解聚:甲醇分解用甲醇钠(图2)
注意:执行步骤2.3 - 2.4,2.7 - 2.8,2.10 - 2.11 2.13 - 2.15和2.17 - 2.18下通风柜;总是穿着白大褂,手套和防溅护目镜。
3.准备作为气相色谱
注意:执行步骤3.1.2和3.1.5 - 3.1.8在通风橱;总是穿着白大褂,手套和防溅护目镜。
4. GC / MS分析
5.数据分析
在这个手稿中描述的协议设置为确定脂质聚酯单体,最小化的非角质脂质10的贡献图1表示的测定法,其中共花费之间8的概述(即角质或软木脂) - 10天(从初始组织收获到获得的GC数据),这取决于样品多久被允许干燥。
所选择的碱催化的甲醇分解(图2)的方法来解聚聚酯先前被验证为拟南芥的种子,其中同时包含角质和软木脂。组织被第一匀化和彻底去脂以除去溶剂萃取的脂质。萃取后的残留物的产量,作为初始鲜重的百分比,为A.通常为6% 拟南芥 Col-0中的叶子。细胞壁富集残基被干燥在真空干燥器,然后通过解聚成其组成甲酯单体碱催化transmethylation。两小时培养被选择作为需要进行适当的解聚和脂质聚酯组分的回收的临界时间。较长的孵育时间导致增加2-羟基酸;这些潜在源于鞘脂膜10。
如果拟南芥野生型叶角质如图3的典型色谱, 办理 O -TMSi醚衍生物( 图3A)和O -乙酰基衍生物( 图3B)。每个峰通过比较质谱从文献7,8和公共数据库12。我们的视频协议示出了如何准备TMSI衍生物确定,但样品可替代地乙酰化衍生化的羟基。硅烷化衍生物是很好的用于标识目的,因为他们给的诊断质谱。然而,乙酰化衍生物更稳定,一个很好的替代硅烷化一旦单体已经确定了10个。为了帮助实现此协议中的实验室仅具有GC耦合 到火焰离子化检测器(FID)的是,GC / FID迹线对应于WT叶角质单体和同源物一系列脂肪酸甲酯标准乙酰化衍生物也示( 参考图4)。
此方法是定性的,并且检测样本的定量差异,突变分析,因此它的值。各单体的量是使用量化的内标法,使样品之间的单体丰度比较来确定。然而,应该明确的是,峰的大小(总离子计数)可能不反映在聚酯中单体的摩尔比。我们包括单体的可编辑的表来计算在拟南芥叶子角质单体量为脂肪酸甲基酯和TMSI衍生物( 参考文件1),或王牌醇的TYL衍生物( 参考文件2)。这些表可能需要的,如果样本是从不同的器官或植物物种中提取进行调整。
作为一个例子,我们已经分析拟南芥塔利亚娜哥伦比亚(Col-0中)野生型叶片和CYP86A2 / ATT1基因,att1-1(M-1)和att1-2的两个先前表征的空突变等位基因(M-2 )13,14。在CYP86A亚家族的细胞色素P450单加氧酶编码假定ω-oxydases并参与木栓质和角质单体合成。我们的研究结果(图4)证明显著减少三个主要脂质单体的载荷在突变叶片与WT相比叶子。一致的与酶的预测的功能,16:0,18:2和18:1的二羧酸酯在ATT1突变体特别受到影响。
"SRC ="/文件/ ftp_upload / 53386 / 53386fig1.jpg"/>
图中的脂质聚酯分析1.概述。 请点击此处查看该图的放大版本。
图中的NaOMe催化甲基转移反应的2.机制的亲核甲醇阴离子攻击脂质聚酯的cabonyl碳,以形成不稳定的四面体中间体(A),它容易离解成脂肪酸甲酯和醇盐阴离子(B)中 。这些醇盐是共轭碱,和用甲醇反应,再生催化活性甲醇阴离子,从而维持附加解聚反应(C)。如果水存在于系统,它会与甲醇钠反应以形成氢氧化钠,强碱不可逆地水解的酯,以产生不希望的游离脂肪酸。乙酸甲酯加入助溶剂15,除去少量的氢氧化系统(D)中的钠。 请点击此处查看该图的放大版本。
图3。野生型拟南芥叶角质单体的代表总离子色谱图。(A)O三甲基甲硅烷(TMSI)醚和(B)乙羟基衍生物。 请点击此处查看该图的放大版本。
图4.角质单体的拟南芥野生型组合物和CYP86A2基因的两个无效突变体等位基因。(突变-1 = att1-1;突变-2 = att1-2)误差棒代表平均值的标准偏差 (n = 4) 。从13改编,以©Blackwell出版(2007)的权限。 请点击此处查看该图的放大版本。
补充图1峰值积分结果表从GC / MS软件。对应于识别的单体和内部标准的峰由它们的retenti确定时间(列C)和面积值列于列D. 请点击此处下载该文件。
补充文件2。表拟南芥角质单体(羟基脂肪酸甲酯三甲基硅醚衍生物)的。 请点击此处下载该文件。
补充文件3.表拟南芥角质单体(羟基脂肪酸甲酯-O-乙酰衍生物)的。COM /文件/ ftp_upload / 53386 / Supplemental_File_3_Cutin_template_Acetylated_derivatives.xlsx"目标="_空白">请点击此处下载该文件。
补充图4的GC / FID的痕迹(AB)的脂肪酸甲酯(FAME)的保留指数的标准(峰标记与每个饱和FAME链长); 和 (C)乙酰A.拟南芥 WT叶角质单体。上峰编号对应:16:0的FAME(1),阿魏酸(2),18:3的FAME(3),18:1/18:2脂肪酸甲酯(4),18:0的FAME(5),芥子(6 ),16:0 DCA(7),16-OH 16:0的FAME(8),18:2 DCA(9),18:1 DCA(10)18:0 DCA(11),18-OH 18:2 FAME(12),18-OH 18:1的FAME(13),20:0的FAME(14),-10,16- diOH 16:0的FAME(15),24:0的FAME(16)。 DCA:二羧酸二甲酯; FAME:脂肪酸甲酯; IS1:内标1,17:0 FAME; IS2:内部ST昂达尔2,15-OH 15:0 FAME。 请点击此处下载该文件。
不像其他的生物聚合物如DNA和蛋白质,植物脂质聚酯不是从模板制成。相反,他们的组合物依赖于存在于使这些细胞外聚合物组织中的酶的特异性。这样,化学组成的分析成分是关键的了解脂质聚酯组合物。
化学方法裂解的酯键包括皂化,氢解,酸催化transmethylation,和碱催化transmethylation 2。他们每个人都有优点和缺点。皂化产生游离脂肪酸羟基酸,可以进行二次反应。氢解用氢化铝锂(的LiAlH 4)16已被用于角质分析7。氢解降低官能碳为醇和原始结构需要由deuteriolysis锂铝氘(LiAlD 4)推断。该这种方法的缺点是高清晰度的GC / MS的要求来比较获得使它们的结构分配的脂肪多元醇的deuteriation的程度。酸催化的酯交换用甲醇三氟化硼(BF 3)已被常用于角质和软木脂depolymerizations 8,17,18,但该试剂具有有限的货架寿命并可能引入由于副反应15假象。硫酸甲醇也产生的单体,但具有较大的2-羟基脂肪酸的比例,这大概是不正确的脂质聚酯组分甲酯,相比其他方法10。
在这个协议中所描述的的NaOMe催化酯交换法产生由羟基甲硅烷基化衍生的脂肪酸甲酯,用于识别提供特性质谱,或通过乙酰化,以提供羟基更稳定的衍生物FO- [R量化。这种技术的一个缺点是水解竞争与酯交换当水存在于反应。水发生反应的NaOMe(催化剂),并产生氢氧化钠,这反过来水解脂肪酸甲酯,得到游离酸(图2D)。这是一种不希望的副反应,因为两个峰值将存在对于每个脂肪酸:甲基酯和TMSI酯衍生物,因此复杂的分析。用无水试剂并加入乙酸甲酯作为助溶剂与皂化竞争因此关键步骤,以防止水解(图2D)。
1和26%甘油4之间的角质和木栓质含有。但是,此单体不会被在这个协议中所描述的实验条件下进行检测。甘油是高度亲水性的并且,不同于脂肪酸甲酯单体,将在水性溶剂洗涤步骤被消除。这种限制也是一个pplies其他角质解聚方法,但甘油可以在使用酶方法酯交换后得到的水层来确定。可替代地,它可以使用较温和的条件(,0.05M的的NaOMe 当量)定量无需进一步水萃取,以检测所有的单体,包括甘油19,20。虽然对于甘油量化的目的是有用的,在温和的条件通常给角质的不完全解聚和木栓质。
如果耦合到一个火焰离子化检测器(FID)的GC一个是可用的,所有的重复可在该仪器进行定量目的被分析,有代表性的样品的峰已确定的GC / MS后。或者,在GC / FID痕迹单体可以识别,如果他们的保留指数是已知的。火焰离子化检测器具有特别高的灵敏度和宽范围相称,这是主要和次要样品组分定量临界在单次运行。此外,它是坚固和易于维护和操作15。
所描述的协议允许的可靠和可重复的分离,鉴定和定量植物脂质聚酯单体,允许其在不同的一种或多种脂质聚酯单体的组合物的突变体的化学特性。该过程是可伸缩的,它可以很容易地适用于处理小型和大批量的各种植物材料,包括根,种子,叶,茎和花。来自许多物种的脂质聚酯单体的质谱数据已经公布,例如 ,21-26和构成宝贵资源适应这个协议对其他组织和/或物种时识别未知单体。这种方法适用于生物合成,调节和高等植物分布脂质聚酯的调查。
No conflicts of interest declared.
This work was supported by a Natural Sciences and Engineering Research (NSERC)-USRA grant to S.J., and by an NSERC-Discovery Grant to I.M. We thank Richard Bourgault, Meghan Rains, and Amanda Fluke for technical assistance. Seeds of att1-1 and att1-2 mutants were kindly provided by Dr. Jian-Min Zhou, Institute of Genetics and Developmental Biology, Beijing, China.
Name | Company | Catalog Number | Comments |
Chemicals | |||
2-propanol | Fisher Scientific | BPA451-4 | Solvent for delipidation |
Anhydrous sodium sulfate | Fisher Scientific | S421500 | |
Acetic anhydride | Sigma Aldrich | 320102 | Derivatization agent |
BSTFA (N,O-bis(trimethylsilyl)-trifluoroacetamide) | Sigma-Aldrich | 15222 | Derivatization agent |
Butylated hydroxytoluene (BHT) | Sigma-Aldrich | 101162 | Antioxidant |
Calcium chloride, anhydrous | Fisher Scientific | C614-3 | Desiccation agent |
Calcium suflate, anhydrous (DRIERITE- 8 MESH with indicator) | Acros Organics | 219090020 | Desiccation agent |
Chloroform (Trichloromethane) | Fisher Scientific | C6074 | Organic solvent |
Glacial acetic acid | Fisher Scientific | BP2401212 | Acidification agent |
Helium carrier gas, compressed | Air Liquide | ALPHAGAZ1-UN1046 | Carrier gas, GC/MS |
Heptane | Fisher Scientific | H3501 | Organic solvent |
Hexanes | Fisher Scientific | H3024 | Organic solvent |
Methanol | Fisher Scientific | A4124 | Organic solvent, transmethylation reactive |
Methyl acetate | Sigma-Aldrich | 296996 | Organic solvent |
Methyl heptadecanoate | Sigma-Aldrich | H4515 | Internal standard (1mg/mL stock) |
Methylene dichloride (Dichloromethane) | Fisher Scientific | D374 | Organic solvent |
Nitrogen, compressed | Air Liquide | ALPHAGAZ1-UN1044 | Carrier gas, GC-FID |
Pentadecanolactone | Fluka | 76530 | Internal standard (1 mg/mL stock) |
Pyridine | Sigma-Aldrich | 270970 | Co-solvent for derivatization |
Sodium chloride | Fisher Scientific | BP358212 | Saline solution |
Sodium methoxide (25wt.%) | Sigma-Aldrich | 156256 | Nucleophile |
Toluene | FIsher Scientific | T2904 | Organic solvent |
Plant Growth Supplies | |||
Pro-Mix PGX | Premier Tech Horticulture Ltd | Pro-Mix PGX is recommended to grow Arabidopsis plants (Eddy, R. and Hahn, D.T., 2012,http://docs.lib.purdue.edu/pmag/2) Purdue Methods for Arabidopsis Growth. | |
PermaNest Humidity Dome | Grower's Solution, LLC, Cookeville, TN | GD2211-24 | |
Perma-Nest Plant Trays (22x11in) | Grower's Solution, LLC, Cookeville, TN | N/A | |
Square greenhouse pots, 3.5 inch | Grower's Solution, LLC, Cookeville, TN | P86 | |
General Purpose Plant Fertilizer, Plant-Prod 20-20-20 | Premier Tech Home and Garden In., Brantford, ON | N/A | |
Glassware | |||
13 x 100 mm glass test tube with Teflon-faced screw cap | Kimble Chase Life Science and Research Products LLC | 45066A-13100 | |
16 x 125 mm glass test tube with Teflon-faced screw cap | Kimble Chase Life Science and Research Products LLC | 45066A-16125 | |
20 x 125 mm glass test tubes with Teflon-faced screw cap | Kimble Chase Life Science and Research Products LLC | 45066A-20125 | |
GC vial caps | National Scientific | C400051A | |
GC vial microinserts | National Scientific | C4011631 | |
GC vials | National Scientific | C40001 | |
Disposable pasteur pipets | Fisher Scientific | 1367820B | |
Flasks | Fisher Scientific | ||
Equipment | |||
Allegra X15R centrifuge | Beckman Coulter | ||
Analytic balance | Fisher Scientific | ||
Belly dancer | A shaker can be used for this purpose if Belly Dancer not available | ||
DB-5 Capillary GC column | J&W Scientific, CA, USA; | 30 m x 0.25 mm x 0.25 μm film thickness | |
Desiccator | |||
Isotemp 202 water bath | Fisher Scientific | ||
ISQ LT single quadupole mass spectrometer | Thermo Scientific | ||
Heat block | Fisher Scientific | ||
Nitrogen evaporator | |||
Polytron homogenizer | Birkmann | ||
Trace 1300 gas chromatograph | Thermo Scientific | ||
Two-stage regulator | Air Liquide | Q1-318B-580 | |
Vacuum desiccator | Fisher Scientific | ||
Vortex mixer | Fisher Scientific |
请求许可使用此 JoVE 文章的文本或图形
请求许可探索更多文章
This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。