登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

隔离家鼠腓肠肌密封性是足踝部病变的常见原因。目前国内还没有规范的检测程序存在。这份手稿表明,20度屈膝消除了M的制约作用对踝关节背屈和腓肠肌提出了统一考试协议的视频描述。

摘要

常见的脚和踝关节病症已与孤立家鼠腓肠肌密封性(MGT)。各种检查技术已经描述评估MGT。尽管如此,标准化的审批程序缺失。文学主张负重检查,但需要膝关节屈曲度,以消除M的制约作用对踝关节背屈(ADF) 腓肠肌是未知的。该原稿调查屈膝上踝关节背屈的影响,并提供了标准化检查协议的详细描述。关于20名健康个体检查发现,即20°屈膝足以充分消除M的影响腓肠肌上ADF。这建立了一个标准化考试MGT的前提。 ADF的非负重和负重检查具有进行与膝盖完全伸展和至少20°弯曲。两名调查员应在仰卧位进行主题非负重测试。为了获得可靠的结果,腓骨的轴线应标明。一个考官可以在弓步立场主题进行负重检查。如果ADF与膝盖在显著上升ADF完全伸展和屈膝结果受损的隔离MGT存在。本文中所提出的统一考试是为今后的研究旨在建立正常值的前提。

引言

有限公司踝关节背屈(ADF)改变步态运动学,并负责常见的足部病变,包括跟腱炎,应力性骨折,跖骨和足底足跟痛1-5。有限ADF的最常见的原因是孤立的家鼠腓肠肌密封性(MGT)3,6。

脚踝的关节运动由屈膝作为分枝的影响腓肠肌桥梁双侧颞下颌关节。肌肉是在张力下时膝盖完全伸展,作为肌肉的起源然后最远近端。这M.腓肠肌然后抑制ADF。屈膝近似于肌肉的原点,从而降低了分枝腓肠肌的张力,并因此增加了ADF中。踝关节背屈然后通过踝关节的其他解剖结构的限制, 图1示出了这一原理。在MGT的情况下,ADF是有限的膝盖完全离倾向于而是由膝关节4的屈曲大大增加。

对于MGT临床检查取上述原则的优势,首先是由Silfverskiöld,瑞典骨科医生7于1923年发表。从那时起,许多检查技术已被描述的,所有这些比较在ADF用膝盖延伸并弯曲。发表的临床试验可分为非负重5,8,负重9,10和仪表11,12。如今,非负重检查是最常见的进行13。病人被置于仰卧在检查床上和ADF进行评估与膝盖完全伸展并一般为90°弯曲( 图2A)。与此相反,负重ADF测量与弓步姿态直立受试者进行。后排膝盖伸展或弯曲,询问受试者只是脚跟发射前向前倾( 图2B)。对于这两种测试MGT诊断,如果用膝盖延长了ADF自动进稿器中的一个显著上升受损和膝关节屈曲结果。

虽然非负重测试频繁地进行,负重测试有几个优点。首先,需要一种用于负重检查只有一个调查,而两位考官需要实现可靠的非负重测量。二,负重检查更加紧密地反映步态期间的负荷。第三,施加到踝的力独立于检查者。四,负重检查具有更高的内部和跨信度9,10,13-15。

为MGT所有测试的主要限制是,膝屈曲的最小程度需要消除分枝的抑制作用在ADF 腓肠肌不明8,15。而90°膝关节屈曲通常应用在非负重检测5,8,16撒谎,这是不适合的负重检查可行的。广大人民不能没有抬起脚跟离地执行与膝关节屈曲90°弓步。因此,大多数的研究进行负重考试没有控制膝关节屈曲8,15。为了进行可靠的负重检查它必须查明最小程度所需的膝盖屈曲消除M的抑制作用腓肠肌上ADF。

总体而言,文学主张负重测试MGT的诊断。为了提供有效的负重检查过程,膝屈曲,以消除M的ADF抑制效果所需的最低限度腓肠肌必须已知。本研究的目的是调查屈膝ADF的非负重的影响和负重检测,并提供一个步骤bŸ一步的指导,进行​​非负重和负重考试MGT。

研究方案

伦理学声明:这项研究是由德国慕尼黑大学(#007-14)的当地伦理委员会的批准。

注意:检查床上双方可以自由进出,对于一些非承重测试脚端。在垂直的墙壁上的接地的线路(磁带,约2米),是需要负重测试。与2°增量和20厘米长的标准测角仪使用。我们建议使用含有ADF测量膝关节延长,弯曲分开每条腿一个标准化的四格表记录结果。

1.参与者准备

  1. 让主体脱下自己的裤子脱掉鞋袜。
  2. 通过绘制连接远侧腓骨5厘米,15厘米腓骨的前端上面的中心的线标记腓骨的轴线。

2.非承重测量(图2A)

  1. 有两名调查员进行measuremen吨,一进行测试,其它测量踝关节背屈程度。
  2. 在广场上检查床上取仰卧位的主题。检查榻必须在两侧和脚端都可以自由进出。
  3. 有研究者第一次发生,一方面在距下关节的水平,以确保后脚的中性旋前,旋后位,并将另一方面周围的足弓。从而一方面稳定距舟关节,而另一只手上的前掌跖方面施加力以达到最大的踝关节背屈。
  4. 有研究者首先确保膝关节完全伸直。
  5. 有研究者第二次执行使用测角仪的踝关节背屈的测量。放置连接腓骨的先前标记轴的起点和终点的测角器的一个臂。对准另一个臂与脚的足底方面。
  6. 注意在documentati结果上表。
  7. 有研究者首先保证90度屈膝通过将一只手放在大腿远端背侧,而另一只手放在前脚掌的足底方面施加力,以实现最大踝关节背屈。
  8. 有研究者第一次发生,一方面在距下关节的水平,以确保后脚的中性旋前,旋后位,并将另一方面周围的足弓。从而一方面稳定距舟关节和另一方面在前脚的足底方面施加力以达到最大的踝关节背屈。
  9. 有研究者第二次执行使用测角仪的踝关节背屈的测量。放置连接腓骨的先前标记轴的起点和终点的测角器的一个臂。对准另一个臂与脚的足底方面。
  10. 注意在文件表的结果。
  11. 为对照重复步骤2.1至2.10alateral一面。

3.负重测量(图2B)

  1. 有一个调查员进行测试。
  2. 将标的站在墙对面。
  3. 让主体进入与腿弓步姿势来衡量是后排腿部。
  4. 有研究者帮助主题把他/她后脚集中在先前标记线。确保脚后跟和后腿的第二个脚趾上线居中。
  5. 让主体守住墙,以稳定他们的立场。
  6. 有主题充分扩大其后排腿部。有研究者保证膝盖完全伸展。要知道,即使是轻微的膝关节屈曲显著影响踝关节背屈。
  7. 让主体朝墙将他们的臀部,直到刚刚才脚跟抬离后腿。根据需要前腿可弯曲/舒适。
  8. 有研究者将一只手放在背距下关节的方面,以确保后脚的中性旋前,旋后位。
  9. 有研究者用另一只手进行踝关节背屈的测量。对准连接腓骨的先前标记轴的起点和终点的测角器的一个臂。放置在地板上的另一只手臂。
  10. 注意在文件表的结果。
  11. 让主体进入与腿弓步姿势来衡量是后排腿部。因此有朝墙患者移动,直到一个舒适的位置已经到达。
  12. 有研究者帮助主题把他/她后脚集中在先前标记线。确保脚后跟和后腿的第二个脚趾上线居中。
  13. 让主体守住墙,以稳定他们的立场。
  14. 有弯曲的小腿后部的主题舒适和朝墙将他们的臀部,直到刚刚才脚跟取下后腿。根据需要前腿可弯曲/舒适。
  15. 已经研究者保证后膝关节弯曲至少20度。在有疑问的情况下,使用测角仪,确保膝关节屈曲超过19度。
  16. 对距下关节的背侧研究者地方一方面要保证后脚的中性旋前,旋后位。
  17. 用另一只手进行踝关节背屈的测量。对准连接腓骨的先前标记轴的起点和终点的测角器的一个臂。放置在地板上的另一只手臂。
  18. 注意在文件表的结果。
  19. 为对侧重复步骤3.1至3.18。

4.数据分析与解读

  1. 向受试者识别对症侧。
  2. 查看的文档表中ADF数据。
    1. 首先确定是否ADF与KNee值扩展是在症状侧小于10°。如果是这样,考虑MGT是一个可能的原因。然后,比较的ADF用膝盖延伸并弯曲。如果在ADF的显著增加膝关节屈曲的结果,MGT存在。
    2. 如果ADF大于10°,用膝盖延长双腿之间比较ADF。如果ADF上的症状相比减少非对症侧考虑MGT是一个可能的原因。如果在ADF的显著增加对症侧面结果膝关节屈曲,MGT存在。

结果

20名健康个体的两个脚踝(平均27.1±3.9岁),50%为女性,进行了检查。在六个不同程度的膝盖屈曲非负重和负重试验(完全伸展,20°,30°,45°,60°,75°)和伦哥测试(不受控制的膝关节屈曲)进行的。一个功能括号是用来控制膝关节屈曲。测量被蒙蔽对方的结果两名调查员进行。每个个体之间,调查的顺序和膝关节屈曲的顺序改变。该达戈斯蒂诺和Pearson检验显示没?...

讨论

20健康人检查发现,这20度屈膝已经消除了M的影响腓肠肌上ADF。另外膝关节屈曲造成了不显著ADF增加。对于MGT标准化非负重和负重检查的此呈现视频说明构建未来研究建立生理正常值的前提。

这项研究有局限性。第一,没有定制测量装置被用来评估ADF,这可能有助于测量误差。这是为研究者依靠在非负重检测,使用测角仪和相邻关节运动的施加力。此外,本文?...

披露声明

The authors have nothing to disclose.

A biometric version of this study has been published 17. The herein presented paper focuses on the actual conduct of the clinical examinations for isolated MGT. The findings of the biometric paper 17 on the influence of the degree of knee flexion are implanted in this paper.

致谢

We would like to thank Jakob Binder for his help in subject acquisition and organization of the examinations, Mrs. Hella Thun for designing Figure 1 and 2 and finally Mr. Dipl.-Ing. (FH), M.Sc. M. Saller for his statistical support.

材料

NameCompanyCatalog NumberComments
Examination couch
Standard goniometer MDF Instruments USA, Inc. Malibu, CA, USA2° increments

参考文献

  1. Wilder, R. P., Sethi, S. Overuse injuries: tendinopathies, stress fractures, compartment syndrome, and shin splints. Clin Sorts Med. 23, 55-81 (2004).
  2. Irving, D. B., Cook, J. L., Menz, H. B. Factors associated with chronic plantar heel pain: a systematic review. J Sci Med Sport. 9, 11-22 (2006).
  3. Patel, A., DiGiovanni, B. Association between plantar fasciitis and isolated contracture of the gastrocnemius. Foot Ankle Int. 32, 5-8 (2011).
  4. DiGiovanni, C. W., et al. Isolated gastrocnemius tightness. JBJS Am. 84-A, 962-970 (2002).
  5. Bolìvar, Y. A., Munuera, P. V., Padillo, J. P. Relationship between tightness of the posterior muscles of the lower limb and plantar fasciitis. Foot Ankle Int. 34, 42-48 (2013).
  6. Hill, R. S. Ankle equinus. Prevalence and linkage to common foot pathology. J Am Podiatr Med Assoc. 85, 295-300 (1995).
  7. Silfverskiold, N. Reduction of the uncrossed two-joints muscles of the leg to one-joint muscles in spastic conditions. Acta Chir Scand. 56, 315-330 (1923).
  8. Krause, D. A., Cloud, B. A., Forster, L. A., Schrank, J. A., Hollman, J. H. Measurement of ankle dorsiflexion: a comparison of active and passive techniques in multiple positions. J Sport Rehabil. 20, 333-344 (2011).
  9. Bennell, K. L., et al. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 44, 175-180 (1998).
  10. Munteanu, S. E., Strawhorn, A. B., Landorf, K. B., Bird, A. R., Murley, G. S. A weightbearing technique for the measurement of ankle joint dorsiflexion with the knee extended is reliable. J Sci Med Sport. 12, 54-59 (2009).
  11. Wilken, J., Rao, S., Estin, M., Saltzman, C. L., Yack, H. J. A new device for assessing ankle dorsiflexion motion: reliability and validity. J Orthop Sports Phys Ther. 41, 274-280 (2011).
  12. Gatt, A., Chockalingam, N. Validity and reliability of a new ankle dorsiflexion measurement device. Prosthet Orthot Int. 37, 289-297 (2013).
  13. Baggett, B. D., Young, G. Ankle joint dorsiflexion. Establishment of a normal range. J Am Podiatr Med Assoc. 83, 251-254 (1993).
  14. Menz, H. B., et al. Reliability of clinical tests of foot and ankle characteristics in older people. J Am Podiatr Med Assoc. 93, 380-387 (2003).
  15. Rabin, A., Kozol, Z. Weightbearing and Nonweightbearing Ankle Dorsiflexion Range of Motion: Are We Measuring the Same Thing?. J Am Podiatr Med Assoc. 12, 406-411 (2012).
  16. You, J. Y., et al. Gastrocnemius tightness on joint angle and work of lower extremity during gait. Clin Biomech (Bristol, Avon). 24, 744-750 (2009).
  17. Baumbach, S. F., et al. The influence of knee position on ankle dorsiflexion - a biometric study. BMC Musculoskelet Disord. 15, 246 (2014).
  18. Martin, R. L., McPoil, T. G. Reliability of ankle goniometric measurements: a literature review. J Am Podiatr Med Assoc. 95, 564-572 (2005).
  19. Tiberio, D. Evaluation of functional ankle dorsiflexion using subtalar neutral position. A clinical report. Phys Ther. 67, 955-957 (1987).
  20. Tiberio, D., Bohannon, R. W., Zito, M. A. Effect of subtalar joint position on the measurement of maximum ankle dorsiflexic. Clin Biomech (Bristol, Avon). 4, 189-191 (1989).
  21. Bohannon, R. W., Tiberio, D., Waters, G. Motion measured from forefoot and hindfoot landmarks during passive ankle dorsiflexion range of motion. J Orthop Sports Phys Ther. 13, 20-22 (1991).
  22. Johanson, M., Baer, J., Hovermale, H., Phouthavong, P. Subtalar joint position during gastrocnemius stretching and ankle dorsiflexion range of motion. J Athl Train. 43, 172-178 (2008).
  23. Kim, P. J., et al. Interrater and intrarater reliability in the measurement of ankle joint dorsiflexion is independent of examiner experience and technique used. J Am Podiatr Med Assoc. 101, 407-414 (2011).
  24. Youdas, J. W., Krause, D. A., Egan, K. S., Therneau, T. M., Laskowski, E. R. The effect of static stretching of the calf muscle-tendon unit on active ankle dorsiflexion range of motion. J Orthop Sports Phys Ther. 33, 408-417 (2003).
  25. Worrell, T. W., McCullough, M., Pfeiffer, A. Effect of foot position on gastrocnemius/soleus stretching in subjects with normal flexibility. TJ Orthop Sports Phys Ther. 19, 352-356 (1994).
  26. Norkin, C. C., White, D. J. . Measurement of Joint Motion: A Guide to Goniometry. , (2003).
  27. Williams, C. M., Caserta, A. J., Haines, T. P. The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test. J Sci Med Sport. 16, 392-395 (2013).
  28. Burns, J., Crosbie, J. Weight bearing ankle dorsiflexion range of motion in idiopathic pes cavus compared to normal and pes planus feet. Foot (Edinb). 15, 91-94 (2005).
  29. Konor, M. M., Morton, S., Eckerson, J. M., Grindstaff, T. L. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 7, 279-287 (2012).
  30. Basnett, C. R., et al. Ankle dorsiflexion range of motion influences dynamic balance in individuals with chronic ankle instability. Int J Sports Phys Ther. 8, 121-128 (2013).
  31. Kang, M. H., Lee, D. K., Park, K. H., Oh, J. S. Association of ankle kinematics and performance on the y-balance test with inclinometer measurements on the weight-bearing-lunge test. J Sport Rehabil. 24, 62-67 (2015).
  32. Purcell, S. B., Schuckman, B. E., Docherty, C. L., Schrader, J., Poppy, W. Differences in ankle range of motion before and after exercise in 2 tape conditions. Am J Sports Med. 37, 383-389 (2009).
  33. Simondson, D., Brock, K., Cotton, S. Reliability and smallest real difference of the ankle lunge test post ankle fracture. Man Ther. 17, 34-38 (2012).
  34. Hoch, M. C., Staton, G. S., Medina McKeon, J. M., Mattacola, C. G., Mckeon, P. O. Dorsiflexion and dynamic postural control deficits are present in those with chronic ankle instability. J Sci Med Sport. 15, 574-579 (2012).
  35. Hoch, M. C., Staton, G. S., Mckeon, P. O. Dorsiflexion range of motion significantly influences dynamic balance. J Sci Med Sport. 14, 90-92 (2011).
  36. Charles, J., Scutter, S. D., Buckley, J. Static ankle joint equinus: toward a standard definition and diagnosis. J Am Podiatr Med Assoc. 100, 195-203 (2010).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

113 Silfverski ld

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。