需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
We present protocols for the collection, preparation, and imaging of mature Drosophila oocytes. These methods allow the visualization of chromosome behavior and spindle assembly and function during meiosis.
Chromosome segregation in human oocytes is error prone, resulting in aneuploidy, which is the leading genetic cause of miscarriage and birth defects. The study of chromosome behavior in oocytes from model organisms holds much promise to uncover the molecular basis of the susceptibility of human oocytes to aneuploidy. Drosophila melanogaster is amenable to genetic manipulation, with over 100 years of research, community, and technique development. Visualizing chromosome behavior and spindle assembly in Drosophila oocytes has particular challenges, however, due primarily to the presence of membranes surrounding the oocyte that are impenetrable to antibodies. We describe here protocols for the collection, preparation, and imaging of meiosis I spindle assembly and chromosome behavior in Drosophila oocytes, which allow the molecular dissection of chromosome segregation in this important model organism.
The study of meiosis is sometimes described as the "genetics of genetics". This is because the fundamental properties of chromosome inheritance and independent assortment are carried out through the segregation of chromosomes during gamete production. An important demonstration of the chromosome theory of inheritance came in 1916 from the work of Calvin Bridges in Drosophila melanogaster1. This and other classical genetics studies in Drosophila contributed greatly to our understanding of genetics. Cytological examination of meiotic chromosomes in Drosophila oocytes, however, has been challenging. This is primarily because immunofluorescence of late-stage Drosophila oocytes, when the spindle assembles and chromosomes are oriented for segregation, is hampered by the presence of membranes that render the oocyte impenetrable to antibodies.
Despite this challenge, Drosophila oocytes remain an attractive model for the study of chromosome behavior and spindle assembly. This is because of the powerful genetic tools available in Drosophila, but also because the oocytes arrest at metaphase I, when the chromosomes are oriented and the spindle is fully formed. This facilitates the collection and examination of large numbers of oocytes at this important stage of cell division. In addition, a simple model organism that is amenable to genetic manipulation for the study of oocyte chromosome segregation can provide an important contribution to our understanding of human reproductive health. Errors in chromosome number are the leading genetic cause of miscarriage and birth defects in humans2. A majority of these errors can be traced to the oocyte and are correlated with increasing maternal age. The average age of mothers in the U.S. has been increasing, making this a major public health concern.
We describe here methods for the cytological examination of Drosophila oocytes, including a demonstration of how to remove the oocyte membranes. These methods are modifications of protocols first described by Theurkauf and Hawley3, Zou et al.4, and Dernburg et al.5. We also include methods for the enrichment of different stages of oocytes, based on a protocol first described by Gilliland et al.6. Finally, we add instructions for the drug treatment of Drosophila oocytes. Together, these methods allow the cytological investigation of oocyte chromosome segregation and spindle assembly in Drosophila.
注意:程序在室温下,除非另有说明进行。温度控制的恒温箱用于维持温度为蝇饲养和跨越除非另有说明。
1.准备
2.晚期果蝇卵母细胞的收集
3.药物治疗(可选)
4.固定
5.去除膜("滚动")
6. 果蝇卵母细胞的抗体染色
7. FISH(从上面的步骤5继续)
8.抗体染色后鱼
重复名称 | 染色体 | 寡核苷酸序列* |
359 | X | GGGATCGTTAGCACTGGTAATTAGCTGC |
AACAC | 2 | AACACAACACAACACAACACAACACAACACAACACAACAC |
十二 | 3 | CCCGTACTGGTCCCGTACTCGGTCCCGTACTCGGT |
1.686 | 2 + 3 | AATAACATAGAATAACATAGAATAACATAG |
AATAT | 4(+ Y) | AATATAATATAATATAATATAATATAATAT |
*从埃里克·乔伊斯,个人通信,沙利文等其他序列359序列。8 |
表1:FISH 探针果蝇 着丝粒重复。
药物 | 溶剂 | 股权集中度 | 最终浓度 | 治疗时间 | 影响 |
秋水仙碱 | 乙醇 | 125毫米 | 150μM | 10分钟或30分钟 | 破坏非着丝粒(10分钟)9或所有(30分钟)的微管 |
紫杉醇 | DMSO | 10毫 | 10μM | 10分钟 | 稳定话筒rotubules |
Binucleine 2 | DMSO | 25毫米 | 25μM | 20分钟 | 抑制极光酶b激酶10 |
表2:药物治疗。
将导致较减数分裂的三个阶段( 图1)的后期果蝇卵母细胞的集合中,我们在这里描述的方法。在前期的卵母细胞通过核膜的存在,这是由在karyosome( 图1A)周围区域缺乏微管蛋白信号的可见区别。前中期是核膜破裂期间,主轴组装后的时期。期间前中期,所述karyosome呈现独特的形状,成为与从主karyosome质量( 图1B)的第
分期果蝇卵母细胞
虽然细长karyosome常见于前中期的卵母细胞,用karyosome形状从中期的卵母细胞前中期区分可能会有问题。期间前中期,所述karyosome开始表现为圆形,伸长,然后作为卵母细胞接近中期阻滞缩回到圆形。这意味着许多前中期的卵母细胞不具有细长karyosome。此外,如果被检查体或药物处理的卵母细胞,karyosome形状可能受到影响,使用这种方法?...
The authors have nothing to disclose.
We thank Christian Lehner for providing the CENP-C antibody and Eric Joyce for recommendations on FISH. Work in the McKim lab was funded by a grant from NIH (GM101955).
Name | Company | Catalog Number | Comments |
15 ml conical tubes | Various | ||
16% formaldehyde | Ted Pella, Inc. | 18505 | HAZARDOUS; once opened, discard after one month |
250 ml beakers | Various | ||
5 ml tubes | Various | ||
active dry yeast | Various | mix with water to make a paste the consistency of peanut butter | |
anti-α-tubulin antibody conjugated to FITC | Sigma | F2168 | clone DM1A |
Binucleine 2 | Sigma | B1186 | HAZARDOUS |
blender | Various | ||
bovine serum albumin | Sigma | A4161 | |
calcium chloride | Various | ||
colchicine | Sigma | C-9754 | HAZARDOUS |
coverslips | VWR | 48366-227 | No. 1 1/2 |
dextran sulfate | Various | ||
DMSO | Various | ||
EGTA | Various | ||
ethanol | Various | ||
forceps | Ted Pella, Inc. | 5622 | Dumont tweezers high precision grade style 5 |
formamide | Sigma | 47670-250ML-F | |
glass slides | VWR | 48312-003 | |
glucose | Various | ||
graduated 1.5 ml tubes | Various | ||
HEPES | VWR | EM-5330 | available from several venders |
Hoechst 33342 | Various | ||
magnesium chloride | Various | ||
methanol | Various | ||
large mesh (~1,500 µm) | VWR | AA43657-NK | variety of formats and other suppliers, 12 or 14 mesh |
small mesh (~300 µm) | Spectrum labs | 146 424 | variety of formats, e.g., 146 422 or 146 486 |
nutator | Various | ||
Pasteur pipets | Various | ||
potassium acetate | Various | ||
Cacodylic acid | Sigma | C0125 | HAZARDOUS; alternatively, sodium cacodylate may be substituted |
potassium hydroxide | Various | ||
sodium acetate | Various | ||
sodium chloride | Various | ||
sodium citrate | Various | ||
sodium hydroxide | Various | ||
sucrose | Various | ||
taxol (paclitaxel) | Sigma | T1912 | HAZARDOUS |
Triton X-100 | Fisher | PI-28314 | |
Tween 20 | Fisher | PI-28320 | |
vortex | Various |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。