È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
We present protocols for the collection, preparation, and imaging of mature Drosophila oocytes. These methods allow the visualization of chromosome behavior and spindle assembly and function during meiosis.
Chromosome segregation in human oocytes is error prone, resulting in aneuploidy, which is the leading genetic cause of miscarriage and birth defects. The study of chromosome behavior in oocytes from model organisms holds much promise to uncover the molecular basis of the susceptibility of human oocytes to aneuploidy. Drosophila melanogaster is amenable to genetic manipulation, with over 100 years of research, community, and technique development. Visualizing chromosome behavior and spindle assembly in Drosophila oocytes has particular challenges, however, due primarily to the presence of membranes surrounding the oocyte that are impenetrable to antibodies. We describe here protocols for the collection, preparation, and imaging of meiosis I spindle assembly and chromosome behavior in Drosophila oocytes, which allow the molecular dissection of chromosome segregation in this important model organism.
The study of meiosis is sometimes described as the "genetics of genetics". This is because the fundamental properties of chromosome inheritance and independent assortment are carried out through the segregation of chromosomes during gamete production. An important demonstration of the chromosome theory of inheritance came in 1916 from the work of Calvin Bridges in Drosophila melanogaster1. This and other classical genetics studies in Drosophila contributed greatly to our understanding of genetics. Cytological examination of meiotic chromosomes in Drosophila oocytes, however, has been challenging. This is primarily because immunofluorescence of late-stage Drosophila oocytes, when the spindle assembles and chromosomes are oriented for segregation, is hampered by the presence of membranes that render the oocyte impenetrable to antibodies.
Despite this challenge, Drosophila oocytes remain an attractive model for the study of chromosome behavior and spindle assembly. This is because of the powerful genetic tools available in Drosophila, but also because the oocytes arrest at metaphase I, when the chromosomes are oriented and the spindle is fully formed. This facilitates the collection and examination of large numbers of oocytes at this important stage of cell division. In addition, a simple model organism that is amenable to genetic manipulation for the study of oocyte chromosome segregation can provide an important contribution to our understanding of human reproductive health. Errors in chromosome number are the leading genetic cause of miscarriage and birth defects in humans2. A majority of these errors can be traced to the oocyte and are correlated with increasing maternal age. The average age of mothers in the U.S. has been increasing, making this a major public health concern.
We describe here methods for the cytological examination of Drosophila oocytes, including a demonstration of how to remove the oocyte membranes. These methods are modifications of protocols first described by Theurkauf and Hawley3, Zou et al.4, and Dernburg et al.5. We also include methods for the enrichment of different stages of oocytes, based on a protocol first described by Gilliland et al.6. Finally, we add instructions for the drug treatment of Drosophila oocytes. Together, these methods allow the cytological investigation of oocyte chromosome segregation and spindle assembly in Drosophila.
Nota: Le procedure sono eseguite a temperatura ambiente salvo diversamente indicato. incubatori a temperatura controllata sono utilizzati per mantenere temperature per volare allevamento e attraversa se non diversamente specificato.
1. preparati
2. Raccolta di ritardo-fase di Drosophila ovociti
3. Trattamenti farmacologici (Opzionale)
4. Fissazione
5. Rimozione Membrane ( "Rolling")
6. Anticorpo colorazione di Drosophila ovociti
7. FISH (continuare dal punto 5 di cui sopra)
8. colorazione degli anticorpi dopo la FISH
Ripetere Nome | Cromosoma | Oligo Sequenza * |
359 | X | GGGATCGTTAGCACTGGTAATTAGCTGC |
AACAC | 2 | AACACAACACAACACAACACAACACAACACAACACAACAC |
dodeca | 3 | CCCGTACTGGTCCCGTACTCGGTCCCGTACTCGGT |
1.686 | 2 + 3 | AATAACATAGAATAACATAGAATAACATAG |
AATAT | 4 (+ Y) | AATATAATATAATATAATATAATATAATAT |
* 359 sequenza di Eric Joyce, comunicazione personale, altre sequenze di Sullivan et al. 8 |
Tabella 1: sonde FISH per Drosophila ripete centromeriche.
Droga | Solvente | la concentrazione della | concentrazione finale | Tempo di trattamento | Effetto |
colchicina | etanolo | 125 mm | 150 pM | 10 min o 30 min | destabilizzare non cinetocore (10 min) 9 o tutti i microtubuli (30 min) |
paclitaxel | DMSO | 10 mM | 10 mM | 10 minuti | stabilizzare microtubules |
Binucleine 2 | DMSO | 25 mM | 25 micron | 20 min | inibire Aurora B chinasi 10 |
Tabella 2: Trattamento farmacologico.
I metodi che abbiamo descritto qui comporterà la raccolta di fase tardo-ovociti Drosophila che rappresentano tre fasi della meiosi (Figura 1). Gli ovociti in profase si distinguono per la presenza della membrana nucleare, che è visibile dalla mancanza di segnale di tubulina nella regione circostante il cariosoma (Figura 1A). Prometafase è il periodo dopo la rottura membrana nucleare durante il quale le assembla mandrino. Durante prometafase, ...
Messa in scena Drosophila ovociti
Anche se un cariosoma allungata è spesso visto in ovociti prometafase, utilizzando cariosoma forma di distinguere prometafase da ovociti in metafase può essere problematico. Durante prometafase, il cariosoma inizia come una forma rotonda, si allunga, e poi si ritrae ad una forma rotonda come l'ovocita si avvicina l'arresto metafase. Ciò significa che molti ovociti prometafase non hanno un cariosoma allungata. Inoltre, se ...
The authors have nothing to disclose.
We thank Christian Lehner for providing the CENP-C antibody and Eric Joyce for recommendations on FISH. Work in the McKim lab was funded by a grant from NIH (GM101955).
Name | Company | Catalog Number | Comments |
15 ml conical tubes | Various | ||
16% formaldehyde | Ted Pella, Inc. | 18505 | HAZARDOUS; once opened, discard after one month |
250 ml beakers | Various | ||
5 ml tubes | Various | ||
active dry yeast | Various | mix with water to make a paste the consistency of peanut butter | |
anti-α-tubulin antibody conjugated to FITC | Sigma | F2168 | clone DM1A |
Binucleine 2 | Sigma | B1186 | HAZARDOUS |
blender | Various | ||
bovine serum albumin | Sigma | A4161 | |
calcium chloride | Various | ||
colchicine | Sigma | C-9754 | HAZARDOUS |
coverslips | VWR | 48366-227 | No. 1 1/2 |
dextran sulfate | Various | ||
DMSO | Various | ||
EGTA | Various | ||
ethanol | Various | ||
forceps | Ted Pella, Inc. | 5622 | Dumont tweezers high precision grade style 5 |
formamide | Sigma | 47670-250ML-F | |
glass slides | VWR | 48312-003 | |
glucose | Various | ||
graduated 1.5 ml tubes | Various | ||
HEPES | VWR | EM-5330 | available from several venders |
Hoechst 33342 | Various | ||
magnesium chloride | Various | ||
methanol | Various | ||
large mesh (~1,500 µm) | VWR | AA43657-NK | variety of formats and other suppliers, 12 or 14 mesh |
small mesh (~300 µm) | Spectrum labs | 146 424 | variety of formats, e.g., 146 422 or 146 486 |
nutator | Various | ||
Pasteur pipets | Various | ||
potassium acetate | Various | ||
Cacodylic acid | Sigma | C0125 | HAZARDOUS; alternatively, sodium cacodylate may be substituted |
potassium hydroxide | Various | ||
sodium acetate | Various | ||
sodium chloride | Various | ||
sodium citrate | Various | ||
sodium hydroxide | Various | ||
sucrose | Various | ||
taxol (paclitaxel) | Sigma | T1912 | HAZARDOUS |
Triton X-100 | Fisher | PI-28314 | |
Tween 20 | Fisher | PI-28320 | |
vortex | Various |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon