Method Article
许多实验系统已被利用来理解调节T细胞的发育和功能中的免疫应答的机制。这里使用逆转录病毒转导的基因的方法的描述,这是经济,时间效率,最重要的是,高度信息识别调控通路。
Helper T cell development and function must be tightly regulated to induce an appropriate immune response that eliminates specific pathogens yet prevents autoimmunity. Many approaches involving different model organisms have been utilized to understand the mechanisms controlling helper T cell development and function. However, studies using mouse models have proven to be highly informative due to the availability of genetic, cellular, and biochemical systems. One genetic approach in mice used by many labs involves retroviral transduction of primary helper T cells. This is a powerful approach due to its relative ease, making it accessible to almost any laboratory with basic skills in molecular biology and immunology. Therefore, multiple genes in wild type or mutant forms can readily be tested for function in helper T cells to understand their importance and mechanisms of action. We have optimized this approach and describe here the protocols for production of high titer retroviruses, isolation of primary murine helper T cells, and their transduction by retroviruses and differentiation toward the different helper subsets. Finally, the use of this approach is described in uncovering mechanisms utilized by microRNAs (miRNAs) to regulate pathways controlling helper T cell development and function.
The immune response must be highly regulated to eliminate infections but prevent attacks on self-tissue that lead to autoimmunity. Helper T cells play an essential role in regulating the immune response, and a great deal of effort has been undertaken to understand their development and function (illustrated in several recent reviews 1-3). However, many questions remain, and many approaches have been utilized to study the mechanisms controlling helper T cell development and function. These have ranged from the use of in vitro cell culture systems to whole animals. Cell culture systems, especially those using cell lines, offer the benefit of ease of use and the ability to generate large amount of material to do sophisticated biochemical analyses. However, they suffer from their limited ability to reproduce the actual conditions occurring in an immune response. In contrast, whole animal experiments offer the benefit of relevance, but they can suffer from difficulties in manipulation and the ability to perform precise controls in addition to their large costs and ethical implications. Nevertheless, the vast majority of helper T cells studies today still require the use of whole animal experiments involving primary T cells because of the inability of cell lines to duplicate the exact steps occurring in the whole animal. Therefore, it is essential to utilize cost effective approaches that are highly informative.
Genetics is one powerful tool to study helper T cell development and function, yet traditional methods involving gene knockouts or transgenes are time consuming and expensive so they are often out of reach of small labs. However, retroviral transduction offers a powerful, rapid and, cost effective genetic approach to study the mechanisms of specific gene products. Therefore, it is commonly used in papers studying helper T cell development and function.
We have optimized a procedure for retroviral transduction of helper T cells. It utilizes the pMIG (Murine stem cell virus-Internal ribosomal entry site-Green fluorescent protein) retroviral expression vector, in which the gene of interest can be cloned and thereby expressed from the retrovirus long terminal repeat (LTR) 4. In addition, downstream of the inserted gene of interest is an internal ribosome entry sequence (IRES) followed by the green fluorescent protein (GFP) gene so transduced cells can easily be followed by their expression of GFP. The vector was originally derived from the Murine Stem Cell Virus (MSCV) vectors, which contain mutations in repressor binding sites in the LTRs making them resistant to silencing and thus, giving high expression in many cell types including helper T cells 5,6. Production of high titer retrovirus requires a simple transient transfection protocol of human embryonic kidney (HEK) 293T cells with the MIG vector and a helper virus vector that expresses the retroviral GAG, Pol, and Env genes. For this the pCL-Eco helper virus vector 7 works well in producing high titer replication incompetent retroviruses.
Here these protocols for retroviral production and transduction of primary murine T cells are described in addition to some of our results using this approach to study miRNA regulation of gene expression controlling helper T cell differentiation. miRNAs are small RNAs of approximately 22 nucleotides in length that post-transcriptionally regulate gene expression by targeting homologous sequences in protein encoding messenger RNAs and suppressing translation and inducing message instability 8,9. miRNAs play critical roles in developmental gene regulation. They are essential in the earliest stages of development, as embryos that cannot produce miRNAs die at a very early stage 10. In addition miRNAs are important later on in the development of many tissues. They are thought to function by fine-tuning the expression of genes required for developmental programs 1. In helper T cells miRNAs play multiple roles and are required for regulatory T cell (Treg) development 11-14. We used retroviral transduction as a means to dissect the mechanisms of miRNA regulation of Treg differentiation 15. Through such studies important individual miRNAs were determined by retroviral-mediated overexpression. Subsequently, relevant genes regulated by these miRNAs were identified in order to understand the molecular pathways regulated by miRNAs in helper T cell differentiation.
在这些协议进行的所有小鼠的工作被按照动物项目许可六千九百六十五分之七十零下动物科学程序法,英国进行的。
1.逆转录病毒生产
在此之前继续获得所有必要的批准生产转基因生物和在哺乳动物细胞中使用逆转录病毒。
2.主朴素的 CD4 + T细胞的分离
3.逆转录病毒激活CD4 + T细胞转导并分化为特定的T辅助亚群
本实验系统的成功需要T细胞和高滴度逆转录病毒制剂的高纯度的人群。代表性的结果在这里显示为成功的实验的实例。 图1示出了在幼稚辅助性T细胞的分离协议的各个阶段前后选定人群的典型纯度。 图2和3说明反转录病毒生产的分析,通过GFP表达在转染的HEK 293T细胞( 图2)和转导的T细胞( 图3)。在HEK 293T细胞的转染效率可以用不同的逆转录病毒构建显著变化,但这常常不与用GFP + T细胞的数量观察逆转录病毒生产水平相关。此外,GFP + T细胞的数量可以根据偏振条件而变化。此外,m个的GFP EAN表达水平和插入的基因可以根据集成病毒拷贝的数目而变化,上转录的整合位点的影响,以及影响病毒转录物的转录后调节机制。
最后, 图4示出了我们已经与辅助性T细胞的分化时观察到的miRNA的的miR-15b中/ 16过表达的一些典型结果。这些结果表明,一些可以个别实验所以真正的效果,必须通过使用辅助T细胞的不同制剂的多个重复试验的统计分析得到证实内发生的变异性。在这些实验中Th2应答可能难以在这里使用,因为它们很容易Th1应答的C57BL / 6行观察。同样地,IL-9染色可能难以检测高于背景。因此,当务之急是要做到同型对照并设置适当的补偿,以确保正确嘎细胞因子表达婷。在我们的结果,我们发现miR-15B / 16通过抑制mTOR的通过抑制部件Rictor的和mTOR的15的表达信号通路增强iTreg诱导。的miR-15b中/ 16有时可以影响的Th0,Th1细胞,和Th17分化在个别实验,但在多个重复试验检查时,没有显著效果。与此相反的miR-15B / 16表达不显著抑制TH9分化(见参考文献18)。
图在隔离的每个阶段辅助性T细胞的1.典型纯度。代表性流式细胞仪所指示的抗原的结果是从在前向散射(FSC)和侧向角散射(SSC)图指定活细胞的栅极所示。 ( 一 )前和后的CD4阴性选择。 CD4的表达谱,CD8A,和MHCII被示出。这些说明辅助性T细胞的富集和细胞毒性T细胞的损失和II类MHC表达细胞。一个好的净化应导致〜在此阶段90% 的 CD4 + T细胞。 (B)CD25选择。在左边是CD4,CD8A,和MHCII的表达谱,和在右边是CD4和CD25的表达概况前后选择。在CD25负选定单元格的这点"95%应该是CD4 + CD25 - 。 (C)CD62L选择。 CD4,CD8A,和MHCII表达谱显示在左侧。在右边显示与选择后的细胞CD4和CD62L表达谱沿着前,后CD62L选择细胞CD62L和CD44的表达谱。 CD62L选择之后几乎所有的存储单元(CD44 +)的除去,留下包含10-15%的效应细胞(CD62L 低 )幼稚辅助性T细胞的高度富集的群体。对全部FACS型材,相当于设置和尺度特定参数整个维持。数字代表细胞的门控群体中的百分比。在初始选择后的细胞大小略有减少,大概是由于该协议中的机械应力。 请点击此处查看该图的放大版本。
图2.逆转录病毒转染的HEK 293T细胞的分析。GFP表达显示在该要么未转染或转染和病毒培养物上清液的采集后分析的HEK 293T细胞。的GFP分析从FSC的栅极和SSC情节在所述第一面板上的活细胞进行。数字代表的GFP +细胞的选通区域内的百分比。典型Ťransfection效率介于30-90%之间。 请点击此处查看该图的放大版本。
图3.逆转录病毒转导辅助性T细胞的分析。GFP表达示于逆转录病毒转导的辅助性T细胞中的Th0,Th1细胞,Th2细胞,TH9,Th17的分化后,和三天的Treg偏振条件。分析选通在FSC / SSC面板显示实况和活化细胞。转导效率可以根据构建体和偏振条件10-75%之间变化。同样,GFP表达的平均荧光强度会有所不同。 请点击此处查看该图的放大版本。
图4. /效果的miR-15b的表达16在不同的极化条件下辅助性T细胞的分化。代表性的细胞因子谱显示在GFP +从图3的细胞群。 请点击此处查看该图的放大版本。
表 1: 在这些协议中使用的缓冲液 ,请点击此处下载此表为Excel电子表格。
帮手T细胞极化条件 | ||
TH0 | 抗IL-4 | 5微克/毫升 |
抗IFN-γ的 | 5微克/毫升 | |
TH1 | 重组IL-12 | 20纳克/毫升 |
抗IL-4 | 5微克/毫升 | |
Th2细胞 | 重组IL-4 | 40纳克/毫升 |
抗IFN-γ的 | 5微克/毫升 | |
TH9 | 重组型TGF-β | 2.5纳克/毫升 |
重组IL-4 | 40纳克/毫升 | |
抗IFN-γ的 | 10微克/毫升 | |
TH17 | 重组型TGF-β | 2.5纳克/毫升 |
重组IL-6 | 50纳克/毫升 | |
抗IFN-γ的 | 5微克/毫升 | |
抗IL-4 | 5微克/毫升 | |
抗IL-2 | 5微克/毫升 | |
调节性T细胞 | 重组型TGF-β | 2.5纳克/毫升 |
重组IL-2 | 5毫微克/毫升 |
表2: 辅助性T细胞亚群的极化条件。
基因的逆转录病毒介导的过表达是分析在辅助性T细胞功能的有力方式,因为它们的发育和功能通常是由关键调节的表达水平来确定。然而,结果的谨慎的解释是必要的,因为表达水平显著高于内源基因的引入可许多文物。因此,这种技术应该与其他组合以验证的函数的相关性。例如,表达应使用的siRNA或基因敲除(如果可用)降低表达的补充。随着miRNA的,我们通过使用过表达人工miRNA目标是充当竞争性抑制剂的miRNA的15个站点的病毒结合,与阻断过度的实验。逆转录病毒转导的细胞,也可在涉及RNA和蛋白质分析生物化学分析使用。然而,这些实验的一个主要限制是转导资源的效率ulting在转导和未转导的细胞的混合群。因此,这些试验将最有可能需要将GFP +群体的排序。最后, 在体外分化测定法应在体内实验相结合,这是可以实现的一种方式是由导的T细胞过继转移入小鼠和以下它们的分化和它们对免疫反应的影响。
一的该系统的主要限制是,可以打包成逆转录病毒衣壳的RNA基因组的大小。根据我们的经验,为MIG逆转录病毒系统的最大插入尺寸提供了良好的病毒生产3-3.5 KB。因此,更大的基因不能与本系统进行分析,因为它们给差病毒滴度。然而,所以该系统是用于各种基因研究的有用大多数基因比该尺寸更小。
与逆转录病毒转导,这些protoco内的几个备选方案LS已经使用。许多研究者已经利用稳定表达逆转录病毒的基因(例如参照图16)的包装细胞系。然而,我们已获得使用标准的HEK 293T细胞与PCL-生态辅助病毒载体的共转染的最高滴度。幼稚辅助性T细胞的分离,也可以通过细胞分选,而不是磁珠与细胞分离柱协议来实现,但这需要访问一个细胞分选仪,和用于排序时间的费用通常比珠试剂高。最后,还有上用于区分的辅助T细胞分化成不同子集的激活条件的变化。例如,细胞太久的TCR刺激暴露在调节性T细胞诱导条件才能抑制其诱导16。因为逆转录病毒表达需要通过细胞的刺激诱导的细胞分裂这可能是一个问题。然而,我们发现使用此协议与O / N ACTIV高效的调节性T细胞的诱导通货膨胀之前的逆转录病毒转导。
内的这些协议,成功的应用需要几个因素。高滴度逆转录病毒制剂需要的HEK 293T细胞所以高质量DNA并精确地制备2×HBS的有效转染是重要的。此外,HEK 293T细胞的细胞密度需要是在转染的点大约50%,因为转染DNA的良好表达需要将细胞活跃生长的,这将被抑制,如果所述细胞是过于稀疏或密集。在转染过程中最佳密度细胞应在在病毒收集步骤某一点达到汇合,但他们将继续一路过关斩将到最后一集生产高滴度的病毒股票。辅助性T细胞的有效分化需要良好的小区质量,以便确保分离的细胞是在图1所示的纯度。同样地,小区的质量取决于小鼠FROM他们被隔离。对于这些研究,我们使用6-8周龄C57BL / 6小鼠。老年小鼠可具有少幼稚细胞,以及其他菌株可以在其分化不同。例如,如上所述,C57BL / 6的T细胞可能难以诱导Th2应答BALB / c小鼠更容易比C57BL / 6小鼠17这样的Th2应答。此外,任何的分化条件可从实验室稍有变化,以实验室,和基因表达的效果可能仅成为在亚最佳条件表观所以在各偏振条件的细胞因子的浓度可能需要被滴定。最后,对细胞增殖的过表达的基因的作用或偏振条件可以影响转导效率的目的基因的,以便测量效果可能需要优化偏振试剂的定时和浓度。优化所有这些因素应导致该系统信息的结果。
The authors have no conflicting interest in the publication of this work.
This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) grant (BB/H018573/1) and a BD Biosciences grant.
Name | Company | Catalog Number | Comments |
RPMI | Sigma | R8758 | |
DMEM | Sigma | D5671 | |
Penicillin Streptomycin solution | Sigma | P4333 | |
L-Glutamine | Sigma | G7513 | |
β-mercaptoethanol | Sigma | M3148 | |
DPBS | Sigma | D8537 | |
MIG vector | Addgene | Plasmid 9094 | |
pCL-Eco vector | Addgene | Plasmid 12371 | |
Cell strainer | BD Falcon | 352350 | |
Magnetic beads mouse CD4 cell kit | Invitrogen (Dynabeads) | 11415D | |
Streptavidin Beads | Miltenyi Biotech | 130-048-102 | |
MS cell separation columns | Miltenyi Biotech | 130-042-201 | |
LS cell separation columns | Miltenyi Biotech | 130-042-401 | |
CD25 Biotenylated MAb | BD Biosciences | 85059 | clone 7D4 |
CD62L Biotenylated MAb | BD Biosciences | 553149 | clone MEL-14 |
Polybrene (Hexadimethrine Bromide) | Sigma | 107689 | |
Anti-CD3 | eBiosciences | 16-0031-85 | clone 145-2C11 |
Anti-CD28 | eBiosciences | 16-0281-85 | clone 37.51 |
Anti-IL-4 | BD Biosciences | 559062 | clone 11B11 |
Anti-IFN-gamma | BD Biosciences | 559065 | clone XMG1.2 |
Anti-IL-2 | BD Biosciences | 554425 | cloneJES6-5H4 |
Recombinant IL-12 p70 | eBiosciences | 14-8121 | |
Recombinant IL-4 | BD Biosciences | 550067 | |
Recombinant TGF-beta | eBiosciences | 14-8342-62 | |
Recombinant IL-6 | eBiosciences | 14-8061 | |
Recombinant IL-2 | eBiosciences | 14-8021 | |
PMA | Sigma | P8139 | |
Ionomycin | Sigma | I0634 | |
Brefeldin A | eBiosciences | 00-4506 | |
Paraformaldehyde | Sigma | 16005 | Paraformaldehyde is toxic so use appropriate caution when handling |
Foxp3 staining buffer set | eBiosciences | 00-5523 | |
Anti-CD4 FITC | eBiosciences | 11-0041 | clone GK1.5 |
Anti-CD8a perCP-cy5.5 | eBiosciences | 45-0081-80 | clone 53-6.7 |
Anti-MHCII PE | eBiosciences | 12-0920 | clone HIS19 |
Anti-CD25 PE | eBiosciences | 12-0251-82 | clone PC61.5 |
Anti-CD62L PE | eBiosciences | 12-0621-82 | clone MEL-14 |
Anti-CD44 APC | eBiosciences | 17-0441 | clone IM7 |
Anti-IFN-gamma FITC | eBiosciences | 11-7311-81 | clone XMG1.2 |
Anti-IL-4 PE | BD Biosciences | 554435 | clone 11B11 |
Anti-IL-9 PE or APC | eBiosciences/Biolegend | 50-8091-82/514104 | clone RM9A4 |
Anti-IL-17a PE | BD Biosciences | 559502 | clone TC11-18H10 |
Anti-Foxp3 APC or PE | eBiosciences | 17-5773-82/12-5773-80 | clone FJK-16s |
NaCl | Sigma | S7653 | |
KCl | Sigma | P9333 | |
Na2HPO4-2H2O | Sigma | 71643 | |
Dextrose/Glucose | Sigma | G7021 | |
HEPES, free acid | Sigma | H3375 | |
NH4Cl | Sigma | A9434 | |
Disodium EDTA | Sigma | D2900000 | |
KHCO3 | Sigma | 237205 | |
CaCl2 | Sigma | C5670 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。