JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

初级纤毛是在神经祖细胞增殖,神经细胞的分化,和成人神经元功能至关重要的。这里,我们描述研究ciliogenesis和信号蛋白使用初级神经球培养物在神经干/祖细胞和分化的神经元纤毛的贩卖的方法。

摘要

The primary cilium is fundamentally important for the proliferation of neural stem/progenitor cells and for neuronal differentiation during embryonic, postnatal, and adult life. In addition, most differentiated neurons possess primary cilia that house signaling receptors, such as G-protein-coupled receptors, and signaling molecules, such as adenylyl cyclases. The primary cilium determines the activity of multiple developmental pathways, including the sonic hedgehog pathway during embryonic neuronal development, and also functions in promoting compartmentalized subcellular signaling during adult neuronal function. Unsurprisingly, defects in primary cilium biogenesis and function have been linked to developmental anomalies of the brain, central obesity, and learning and memory deficits. Thus, it is imperative to study primary cilium biogenesis and ciliary trafficking in the context of neural stem/progenitor cells and differentiated neurons. However, culturing methods for primary neurons require considerable expertise and are not amenable to freeze-thaw cycles. In this protocol, we discuss culturing methods for mixed populations of neural stem/progenitor cells using primary neurospheres. The neurosphere-based culturing methods provide the combined benefits of studying primary neural stem/progenitor cells: amenability to multiple passages and freeze-thaw cycles, differentiation potential into neurons/glia, and transfectability. Importantly, we determined that neurosphere-derived neural stem/progenitor cells and differentiated neurons are ciliated in culture and localize signaling molecules relevant to ciliary function in these compartments. Utilizing these cultures, we further describe methods to study ciliogenesis and ciliary trafficking in neural stem/progenitor cells and differentiated neurons. These neurosphere-based methods allow us to study cilia-regulated cellular pathways, including G-protein-coupled receptor and sonic hedgehog signaling, in the context of neural stem/progenitor cells and differentiated neurons.

引言

初级纤毛是基于微管的动态亚细胞区室,其用作在胚胎神经元发育1,2期间协调细胞信号传导途径,包括音猬因子(Shh)途径感官天线,并且在成年神经元功能3条块亚细胞信号传导,4 。这些信号途径,如修补5的Shh受体的部件;该途径激活平滑(SMO)6;和Gpr161 7,孤儿G蛋白偶联受体(GPCR),所述Shh通路负调节,定位于纤毛以动态方式。多的GPCR据报道,本地化的纤毛神经元在大脑中7,8,9,10 SUP>,11,12,13,14,15,16。在纤毛和纤毛生成的信号传导途径的缺陷影响多种组织和被统称为ciliopathies 17,18,19。所述ciliopathy疾病谱频繁包括神经发育缺陷,如颅面畸形20,21,22。另外,在丘脑神经元初级纤毛调节饱腹感的中心通路,和缺陷导致中心性肥胖23,在综合征ciliopathies如巴比Biedel综合征24镜像肥胖。此外,神经肽受体纤毛信号调节CENTR人饱腹感通路11,14。如在海马神经元生长抑素受体3腺苷酸环化酶III(ACIII)和GPCR的睫状定位导致新物体识别缺陷和记忆缺陷25,26和平行缺乏睫状完整性27。纤毛生成的信令的发展方面是紧密联系在一起组织动态平衡;特别是,纤毛是在小脑28,29从颗粒祖细胞而产生的Shh亚型髓母细胞瘤的进展重要。因此,纤毛胚胎,产后,和成人的神经元的发育和功能的过程中发挥重要作用。

神经干细胞(NSCs)驻留在脑室下区侧脑室(SVZ),海马的齿状回的颗粒下区,并且在哺乳动物中30,31,32下丘脑第三脑室的脑室区。神经干细胞是多能,具有自我更新的能力,是大脑发育和再生医学30重要。在SVZ最神经干细胞是静态和具有一个孤初级纤毛的是,在许多情况下,伸出到侧脑室33。通过各种受体的定位,诱导下游细胞应答,特别是有关的Shh,TGFβ,和受体酪氨酸激酶途径2,34,35,36中的初级纤毛信号。由于初级纤毛延伸进入侧脑室,假设初级纤毛检测在脑脊液(CSF),以激活神经干细胞的细胞因子37 。最近的研究表明Shh信号传导途径和初级纤毛是用于干细胞在修复的激活和再生多种组织中,包括嗅上皮,肺,肾和38,39,40,41是至关重要的。然而,通过该CSF的机制与神经干细胞进行通信,并且主是否纤毛参与是未知的。在贴壁培养神经干细胞的纤毛;本地化Shh通路部件,诸如SMO和Gpr161在纤毛;并响应嘘42。因此,神经干细胞可以作为研究Shh通路的重要模型系统,纤毛贩卖和神经元分化的途径。此外,从神经干细胞分化的神经元也可用于睫状贩卖测定。

神经球构成从neura的增殖所产生的自由浮动的细胞群的在特定的生长因子和非粘性表面43,44存在下生长升干/祖细胞。神经球来研究在正常发育和疾病31,45,46,47的神经干/祖细胞用作体外培养模型一样重要。在这里,我们描述了用于培养神经干/祖细胞和分化成神经元/神经胶质基于神经球的测定。我们特别强调信号元件为神经干/祖细胞和分化的神经元( 图1)的纤毛的贩卖。相对于培养原代神经元,神经球都比较容易培养,是适合于多次传代和冻融循环,并且可以经历分化成神经元/神经胶质。重要的是,我们确定了神经球源性神经干/祖细胞和分化的神经元在纤毛培养和定位信号有关在这些隔室纤毛功能的分子。基于神经球培养方法可作为在神经干细胞和分化的神经元研究ciliogenesis和纤毛贩卖的理想模型系统。

研究方案

1.从成年小鼠脑中的神经球分离

  1. 异氟醚过量安乐死的成年小鼠(约2个月)。仔细检查鼠标已停止呼吸而死亡后立即解剖。
  2. 用剪刀,使正中切口,打开颅骨。取出大脑。
  3. 放置在冷PBS中脑在冰上的10cm培养皿。按照全安装解剖的方法来获得从侧脑室48 SVZ。
  4. 放置侧脑室到1.5mL管中,在PBS中添加0.05%胰蛋白酶-EDTA的500μL,并在水浴中温育该管15分钟,在37℃。
  5. 15分钟后,添加停止介质的500μL,并轻轻吸管20 - 用1 mL的尖端30倍。避免移液过程中形成气泡。
    注意:这一步是细胞生存的关键。
  6. 降速细胞在500×g下8分钟。弃去上清液,加入1毫升的PBS,重悬吨他的细胞通过用1个毫升尖轻轻吹打5倍。
  7. 降速在500xg 8分钟。使用1个毫升尖弃去上清液,并添加1毫升基础培养基。
  8. (可选)如果细胞碎片中观察到,通过70微米的细胞型过滤通过细胞。
  9. 计数与血球细胞的数目;一般来说,约30000 - 得到60,000个细胞/ SVZ。
  10. 板从一个SVZ的细胞进入一个10cm培养皿用10mL NSC培养基和培养物在37℃,5%CO 2。
  11. (可选)要避免球体49之间的融合,把1000个细胞在预先填充有1.5毫升NSC培养基和培养物在37℃,5%CO 2的超低结合6孔板的单个孔中。
    注:后5-7天,神经球可以观察到( 图2A)。培养期间可与小鼠的年龄或遗传背景不同。
  12. 加入2毫升的NSC培养基每3-4天,以保持文化(不要删除现有介质)。

2.神经球和Ciliogenesis测试的分化能力的分析

  1. 为了分析分化的能力,分析在分化培养基中附着的条件下,神经球。
  2. 通过高压灭菌或在使用之前用紫外线照射消毒的12mm圆形盖玻片上。对于贴壁细胞培养物,把一个无菌的12mm圆形盖玻片至无菌条件下在24孔板的孔中。
  3. 涂层用防护玻璃10秒的0.002%聚-L-赖氨酸(PLL)500μL。吸出溶液,并干燥它10-15分钟。
  4. 添加的层粘连蛋白溶液(5微克/μL)500μL。孵育1个小时盖玻璃在37℃下。
  5. 吸出层粘连蛋白和添加分化培养基或NSC培养基(未分化的对照)的500μL。
  6. 对于分化测定,拿起100 - 与在显微镜下将200μL尖端200微米的球体。加5-10神经球到24孔板中,并培养在分化培养基中7-10天的每个孔中。
  7. 为了分析未分化的神经球,添加5-10神经球到一个24孔板和文化的每个孔在NSC培养基1-2天。附加神经传播,成长为单层( 图2B)。
  8. 小心除去培养基后,固定在PBS中的4%多聚甲醛(PFA)将细胞在室温下15分钟,然后用PBS清洗两次,在室温下5分钟。该板可以被储存在4℃下1-2个月。
    注意:为了显现在NSC培养基神经干/祖细胞和分化培养基中分化的细胞,对巢蛋白进行免疫染色(神经干/祖细胞标记物),β微管蛋白III(TUJ1单克隆,神经元标记物),GFAP(胶质纤维酸性蛋白,星形胶质细胞标记物),和O4(少突胶质细胞标记物)( 图2B-E)。为了分析纤毛,针对Arl13b执行免疫染色(初级CILIA标记)和Gpr161(睫状GPCR)( 图3)。
  9. 安装玻璃盖与安装溶液涂布到载玻片。倾斜载玻片以除去过量的溶液。

神经球Ciliogenesis 3.分析

  1. 为了通过免疫染色分析完整神经球的细胞,转移1mL的培养用培养基的含有多个神经球到1.5mL管和自旋向下在500xg 8分钟。 15分钟除去培养基后固定,用4%(PFA)球体,并用PBS洗涤。降速球体在500×g离心8分钟,收集上清,并在4℃下孵育球体O / N,用30%的蔗糖。
  2. 使用1个毫升尖弃去上清液,并使用切1mL的前端添加的OCT液500μL。切割尖端的边缘以加宽开口,作为OCT是粘性的。
  3. 传输含有神经球的OCT溶液到一次性塑料冷冻模具(10毫米×10毫米×5毫米)。
  4. 冻结m个老上至少15分钟干冰。
  5. (可选的)停止实验并在-80℃冷冻机中模具存储长达1年。
  6. 切用低温恒温器切片;部分的厚度应为15〜30微米。
  7. 为了可视化在神经球初级纤毛,执行针对Arl13b免疫染色( 图4)。

4.文化和神经球和贴壁神经干细胞的通道

  1. 通道中的神经球,而球体尺寸是100-200微米之间;当神经球过大(300微米或以上),它们不是理想的实验。
  2. 转移到神经球50mL试管用1个毫升尖端和降速在500xg 8分钟。
  3. 使用吸气弃去上清液,在PBS中添加0.05%胰蛋白酶-EDTA的500μL,并且在37℃下孵育5分钟。胰蛋白酶的量根据球体的数目而变化。
  4. 加入血清培养基,轻轻管的500微升吨20次用1个毫升尖。
  5. 降速在500xg 8分钟。使用1个毫升尖弃去上清液,并添加1毫升基础培养基。
  6. (可选)如果细胞碎片或未解离的神经球看出,通过70微米的细胞型过滤通过细胞。
  7. 通道中的细胞以10,000细胞/ cm 2在NSC培养基中的密度的10cm培养皿;细胞将准备一个星期后的下一个通道。
  8. (可选的)要冻结的细胞,添加冷冻介质以产生500,000至1,000,000个细胞/ mL的悬浮液。冷冻用低温冷冻容器中的细胞;未解离的神经也被冻结。
  9. 对于贴壁培养,dillute细胞以50,000个细胞/ cm 2的上PLL-和层粘连蛋白涂覆有NSC介质盖玻片,并培养1-2天。

5.饥饿和纤毛的分析

  1. 制备饥饿培养基( 表1)。
  2. 初始PL后1-2天解离后,在一个孔中(对照)和饥饿培养基中再变NSC培养基孔(实验)贴壁细胞的阿婷。
  3. 文化贴壁细胞24小时。
  4. 固定在PBS中的4%PFA将细胞在室温下15分钟并用PBS清洗两次,于室温下每次5分钟。
  5. (可选的)停止实验并在4℃下用PBS中的盖玻片的24孔板存储用于1-2个月。
  6. 用于染色7,50执行协议免疫荧光。
  7. 安装使用安装解决方案的盖玻片。干燥在黑暗载玻片O / N在室温。
  8. 在必要的放大倍率获取关于化合物显微镜图像。使用显微镜,照相机和目标(40X / 1.3油和63X / 1.4油),使用伴随软件控制。采取足够的z部在0.5-0.8微米的间隔( 图5)。
  9. 对于纤毛本地化的定量分析贴壁细胞,通过寻找到DAPI通道获取来自与汇合的细胞连续3-8场中的图像的堆叠。量化使用ImageJ /斐济初级纤毛的数量。典型地,使用在ImageJ的插件"小区计数器"工具>分析对话框来计数与GPCR阳性纤毛细胞;从图像中的堆叠的最大凸起还可以从ImageJ的/ Fiji.Use类似的图像强度和对比度参数导出为来自同一实验的全部图像进行计数和输出的目的。

6.转染的神经球

  1. 坚持解离的细胞,以盖玻片24小时。在一个24孔板的单个孔中使用的细胞密度的细胞通常150000之间75000和在500 NSC的μL平台。
  2. 通过涡旋5秒混合血清培养基减少的25μL和转染试剂的1.5μL在0.5毫升微量离心管。
  3. 添加2.5微克无内毒素的质粒DNA的一个单独的0.5毫升microtubÈ含有降低血清培养基的25μL和通过涡旋5秒混合。
  4. 添加转染试剂的1μL到第二含微管DNA和通过涡旋5秒混合。
  5. 从含有DNA的管到第一微型管中添加混合物中,并通过移液混合。
  6. 孵育混合物在室温10-15分钟。孵育后,轻轻地转染混合物逐滴添加到孔中,在NSC培养基的顶部(500μL/孔)。
  7. 改变介质24小时转染后,以控制介质(NSC培养基)或饥饿培养基(500μL/孔)。
  8. 通过24个小时后更换培养基,以4%PFA固定细胞并进行免疫染色;典型地,至多10%的转染效率使用该方案获得。

结果

从在NSC培养基中的SVZ细胞铺板一周后,神经球漂浮观察到( 图2A)。球体的尺寸50和200微米之间变化。为了检查,如果球体从神经干/祖细胞衍生的,神经球铺板到PLL-和层粘连蛋白包被的在NSC培养基盖玻片2天。然后,他们被免疫染色对神经干/祖细胞标志物,巢。需要有两天,使球体附着于盖玻片并成长为单层细胞。单层细胞为巢蛋白( 图2B)是阳...

讨论

在这里,我们描述了一个方法来生成和维护从成年小鼠SVZ神经球文化。是关于文化的几个相关要点如下。首先,球体的尺寸通常50之间 - 200微米。根据我们的经验,当一个神经球得到直径大于300微米,传代的最佳时机已经错过。这些较大的球体包含在核心死细胞。其次,由于神经球通常用于研究神经干/祖细胞,它使用EGF和碱性FGF(bFGF)的,以保持这些细胞的干性是很重要的。因此,因子诱导分?...

披露声明

The authors declare no competing financial interests.

致谢

Work in S.M.'s laboratory is funded by recruitment grants from CPRIT (R1220) and NIH (1R01GM113023-01).

材料

NameCompanyCatalog NumberComments
12 mm round cover glassFisherbrand12-545-80 
24-well plateFalcon353047
4% paraformaldehyde (PFA)Affymetrix19943
50 mL tubeFalcon352098
95 mm x 15 mm petri dish, slippable lidFisherbrandFB0875714G10 cm dish
70 µm cell strainerFalcon352350
Alexa Fluor 488 Affinipure Donkey Anti-Rabbit IgG (H+L)Jackson Immunoresearch711-545-152Donkey anti Rabbit, Alexa 488 secondary antibody
Arl13B, Clone N295B/66NeuromabAB_11000053
B-27 Supplement (50X), serum freeThermoFisher Scientific17504001B27
CentrifugeThermo scientificST 40R
Cryogenic vialCorning430488
DAPISigmaD9542-10MG
Deoxyribonuclease I from bovine pancreaseSigmaD5025-15KUDnase I
Dimethyl sulfoxideSigmaD8418-100MLDMSO
Disposable Vinyl Specimen MoldsSakura Tissue-Tek Cryomold456510 mm x 10 mm x 5 mm
Dulbecco's Phosphate-buffered Saline 10X, Modified, without calcium chloride and magnesium chloride, liquid, sterile-filtered, suitable for cell cultureSigmaD1408-500MLDPBS
Dumont #5 ForcepsFine science tools11254-20
Fetal Bovine Serum (FBS)SigmaF9026-500ML
Fluoromount-G solutionSouthern Biotech0100-01mounting solution
GFAPDAKOZ0334
Goat anti Mouse IgG1 Secondary Antibody, Alexa Fluor 555 conjugateThermoFisher ScientificA-21127Goat anti Mouse IgG1, Alexa 555 secondary antibody
Goat anti Mouse IgG2a Secondary Antibody, Alexa Fluor 555 conjugateThermoFisher ScientificA-21137Goat anti Mouse IgG2a, Alexa 555 secondary antibody
Gpr161home madeN/A
human bFGFSigmaF0291FGF
hemocytometerHausser Scientific0.100 mm deepimproved neubauer
IsothesiaHenry ScheinNDC 11695-0500-2Isofluorane
Laminin from Engelbreth-Holm-Swarm Sarcoma basement membraneSigmaL2020Laminin
L-Glutamine (200 mM)SigmaG7513
Lipofectamine 3000 Transfection ReagentThermoFisher ScientificL3000
Mr. FrostyNalgene 5100-0036
N-2 supplement (100X)ThermoFisher Scientific17502001N2
Neurobasal mediumGibco21103-049
Normal Donkey SerumJackson ImmunoResearch017-000-121
OCT compoundSakura Tissue-Tek4583OCT
Penicillin-StreptomycinSigmaP4333-100ML
Poly-L-Lysine (PLL)SigmaP4707
Recombinant human EGF protein, CFR and D systems236-EG-200EGF
ScissorFine science tools14060-10
Superfrost plus microscope slideFisher scientific12-550-15slides
Triton X-100Bio-Rad161-0407
Trypsin-EDTA solution (10X)SigmaT4174-100Trypsin
COSTAR 6-Well Plate, With Lid Flat Bottom Ultra-Low Attachment Surface Polystyrene, SterileCorning3471ultra-low binding 6-well plate
β-tubulin IIICovanceMMS-435PTUJ1

参考文献

  1. Mukhopadhyay, S., Rohatgi, R. G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol. 33, 63-72 (2014).
  2. Goetz, S. C., Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 11, 331-344 (2010).
  3. Guemez-Gamboa, A., Coufal, N. G., Gleeson, J. G. Primary cilia in the developing and mature brain. Neuron. 82, 511-521 (2014).
  4. Louvi, A., Grove, E. A. Cilia in the CNS: the quiet organelle claims center stage. Neuron. 69, 1046-1060 (2011).
  5. Rohatgi, R., Milenkovic, L., Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science. 317, 372-376 (2007).
  6. Corbit, K. C., et al. Vertebrate Smoothened functions at the primary cilium. Nature. 437, 1018-1021 (2005).
  7. Mukhopadhyay, S., et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell. 152, 210-223 (2013).
  8. Hilgendorf, K. I., Johnson, C. T., Jackson, P. K. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol. 39, 84-92 (2016).
  9. Berbari, N. F., Johnson, A. D., Lewis, J. S., Askwith, C. C., Mykytyn, K. Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell. 19, 1540-1547 (2008).
  10. Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C., Mykytyn, K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA. 105, 4242-4246 (2008).
  11. Loktev, A. V., Jackson, P. K. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316-1329 (2013).
  12. Marley, A., Choy, R. W., von Zastrow, M. GPR88 reveals a discrete function of primary cilia as selective insulators of GPCR cross-talk. PLoS One. 8, e70857 (2013).
  13. Marley, A., von Zastrow, M. DISC1 regulates primary cilia that display specific dopamine receptors. PLoS One. 5, e10902 (2010).
  14. Omori, Y., et al. Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control. PLoS One. 10, e0128422 (2015).
  15. Koemeter-Cox, A. I., et al. Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci USA. 111, 10335-10340 (2014).
  16. Brailov, I., et al. Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res. 872, 271-275 (2000).
  17. Hildebrandt, F. .. ,. ,. T. .. ,. &. a. m. p. ;. K. a. t. s. a. n. i. s. ,. N. .., Benzing, T., Katsanis, N. Ciliopathies. N Engl J Med. 364, 1533-1543 (2011).
  18. Waters, A. M., Beales, P. L. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 26, 1039-1056 (2011).
  19. Badano, J. L., Mitsuma, N., Beales, P. L., Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 7, 125-148 (2006).
  20. Novarino, G., Akizu, N., Gleeson, J. G. Modeling human disease in humans: the ciliopathies. Cell. 147, 70-79 (2011).
  21. Brugmann, S. A., Cordero, D. R., Helms, J. A. Craniofacial ciliopathies: A new classification for craniofacial disorders. Am J Med Genet A. 152A (12), 2995-3006 (2010).
  22. Valente, E. M., Rosti, R. O., Gibbs, E., Gleeson, J. G. Primary cilia in neurodevelopmental disorders. Nat Rev Neurol. 10, 27-36 (2014).
  23. Davenport, J. R., et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol. 17, 1586-1594 (2007).
  24. Zaghloul, N. A., Katsanis, N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. 119, 428-437 (2009).
  25. Einstein, E. B., et al. Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci. 30, 4306-4314 (2010).
  26. Wang, Z., Phan, T., Storm, D. R. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J Neurosci. 31, 5557-5561 (2011).
  27. Berbari, N. F., et al. Hippocampal and cortical primary cilia are required for aversive memory in mice. PLoS One. 9, e106576 (2014).
  28. Han, Y. G., Alvarez-Buylla, A. Role of primary cilia in brain development and cancer. Curr Opin Neurobiol. 20, 58-67 (2010).
  29. Han, Y. G., et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med. 15, 1062-1065 (2009).
  30. Lim, D. A., Alvarez-Buylla, A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harbor perspectives in biology. 8, (2016).
  31. Shimada, I. S., LeComte, M. D., Granger, J. C., Quinlan, N. J., Spees, J. L. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci. 32, 7926-7940 (2012).
  32. Mich, J. K., et al. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife. 3, e02669 (2014).
  33. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell stem cell. 3, 265-278 (2008).
  34. Pedersen, L. B., Mogensen, J. B., Christensen, S. T. Endocytic Control of Cellular Signaling at the Primary Cilium. Trends Biochem Sci. , (2016).
  35. Christensen, S. T., Clement, C. A., Satir, P., Pedersen, L. B. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol. 226, 172-184 (2012).
  36. Clement, C. A., et al. TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell reports. 3, 1806-1814 (2013).
  37. Taverna, E., Gotz, M., Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol. 30, 465-502 (2014).
  38. Joiner, A. M., Green, W. W., McIntyre, J. C. Primary Cilia on Horizontal Basal Cells Regulate Regeneration of the Olfactory Epithelium. J Neurosci. 35, 13761-13772 (2015).
  39. Inaba, M., Buszczak, M., Yamashita, Y. M. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature. 523, 329-332 (2015).
  40. Peng, T., et al. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature. 526, 578-582 (2015).
  41. Rauhauser, A. A., et al. Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. Am J Physiol: Renal Physiol. 309, F770-F778 (2015).
  42. Chavez, M., et al. Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output. Dev Cell. 34, 338-350 (2015).
  43. Lobo, M. V., et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J. Histochem. Cytochem. 51, 89-103 (2003).
  44. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255, 1707-1710 (1992).
  45. Pastrana, E., Silva-Vargas, V., Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell stem cell. 8, 486-498 (2011).
  46. Nishino, J., Kim, I., Chada, K., Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell. 135, 227-239 (2008).
  47. Shimada, I. S., Peterson, B. M., Spees, J. L. Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke. Stroke. 41, e552-e560 (2010).
  48. Mirzadeh, Z., Doetsch, F., Sawamoto, K., Wichterle, H., Alvarez-Buylla, A. The subventricular zone en-face: wholemount staining and ependymal flow. J Vis Exp. , (2010).
  49. Coles-Takabe, B. L., et al. Don't look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells. 26, 2938-2944 (2008).
  50. Pal, K., et al. Smoothened determines beta-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 212, 861-875 (2016).
  51. Caspary, T., Larkins, C. E., Anderson, K. V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell. 12, 767-778 (2007).
  52. Bangs, F. K., Schrode, N., Hadjantonakis, A. K., Anderson, K. V. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol. 17, 113-122 (2015).
  53. Berbari, N. F., Bishop, G. A., Askwith, C. C., Lewis, J. S., Mykytyn, K. Hippocampal neurons possess primary cilia in culture. J Neurosci Res. 85, 1095-1100 (2007).
  54. Paridaen, J. T., Wilsch-Brauninger, M., Huttner, W. B. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell. 155, 333-344 (2013).
  55. Kiprilov, E. N., et al. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J Cell Biol. 180, 897-904 (2008).
  56. Mukhopadhyay, S., et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180-2193 (2010).
  57. Ishikawa, H., Marshall, W. F. Efficient live fluorescence imaging of intraflagellar transport in mammalian primary cilia. Methods Cell Biol. 127, 189-201 (2015).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

122 G Gpr161

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。