Method Article
我们描述了使用表型的基于荧光的神经氨酸酶抑制测定的到的甲型和乙型流感病毒的易感性评估对神经氨酸酶抑制剂类抗病毒药物。
神经氨酸酶(NA)抑制剂是唯一的类批准用于那些对目前流行株有效的流感的治疗和预防的抗病毒药物。除了它们在治疗季节性流感的使用过程中,NA抑制剂已被一些国家在大流行的情况下,使用的储存。据监测循环流感病毒这一类抗病毒药物的敏感性是非常重要的。有不同类型的可用于评估的流感病毒的NA抑制剂的敏感性测定的,但使用一个荧光底物或化学发光底物的酶抑制测定法是最广泛使用的,并建议。这个协议描述了使用基于荧光的测定法,以评估NA抑制剂流感病毒的易感性。该测定法是基于NA酶裂解2' - (4-甲基伞形酮)-α-D-Ñ-acetylneuraminic酸(MUNANA)衬底以释放荧光产物4-甲基伞形酮(4-MU)。因此,基于给定为IC 50值,该值是必需的,以减少NA活性的50%的NA抑制剂的浓度,确定对流感病毒NA安·娜抑制剂的抑制效果。
血细胞凝集素(HA)和神经氨酸酶(NA)是A型流感和B型流感病毒的两种主要表面糖蛋白。 HA结合到细胞表面的糖蛋白或糖脂的唾液酸半乳糖,而NA通过从细胞表面1上的半乳糖裂解唾液酸释放病毒。的NA抑制剂是一类被合理设计紧密结合到酶NA活性位点,从而防止病毒后代的释放和传播流感的抗病毒药物。奥司他韦和扎那米韦是已批准在全球许多国家用于治疗和流感预防2 NA抑制剂。近年来,两个额外的NA抑制剂帕拉米韦和拉尼米韦,已被批准为国家数量有限的用途。的流感病毒对易感性的NA抑制剂和赋予抗性突变的鉴定筛选是在确定和监测有效实现了重要这个类抗病毒药物的eness。
在过去16年中,基于荧光的NA抑制测定已被常规地在WHO进行合作中心参考与研究流感,墨尔本(墨尔本WHOCCRRI)监测抗病毒易感性之间循环流感病毒的变化趋势。每年,超过2000种流感病毒对抗病毒药物敏感性测试。在大多数流感季节,所述病毒> 98%易受所有四个NA抑制剂2,3,4中 ,虽然在2007-2008北半球流感季节,有在原季节性A(H1N1)病毒的数量猛增这减少了敏感性奥司他韦5。这组病毒,其含有NA氨基酸取代H275Y,传播到世界的由2008年底的其余部分,使得奥塞米韦inappropri全球吃了这种病毒的治疗。绝大多数当前流行的流感B,流感A(H3N2)和流感A(H1N1)pdm09菌株易受奥塞米韦,虽然含有NA氨基酸取代H275Y赋予减少奥塞米韦A(H1N1)pdm09变体的社区簇和帕拉米韦易感,已报道在世界6,7的各个部分。
因为需要有一个足够高的病毒滴度,临床标本(包括动物鼻洗液)必须在任一细胞培养物进行传代或含胚前的抗病毒敏感性测试鸡卵。此文章中描述的NA抑制测定法可分为三个部分:
确定线性范围上的特定荧光计荧光产物4-甲基伞形酮(4-MU)
由于荧光计之间的固有差异,叔他的线性范围为荧光终产物,4-MU,相对荧光单位(RFU),需要建立。一旦4-MU的线性范围建立,最佳目标信号被选择,向其中的流感病毒的浓度在NA活性测定进行调整。一旦完成了特定的荧光,这不应该需要重复。
确定病毒的NA活性
的NA活性测定是一个简单的测定,其涉及添加2'的- (4-甲基伞形酮)-α-D-Ñ-acetylneuraminic酸(MUNANA)衬底以连续稀释病毒。从MUNANA由NA裂解产生的荧光终产物4-MU量被使用荧光计测量。适当的病毒稀释度在NA抑制测定使用由针对病毒稀释绘制荧光单元中选择。从所产生的S形曲线,直线部的中点应该对应于在第1确定的荧光计的4-MU的线性范围和将通知的病毒的适当的浓度在第3节中使用。
评估病毒易感性使用NA抑制测定NA抑制剂
为了评估的病毒到特定NA抑制剂的敏感性,在第2节中所确定的稀释的病毒温育与一系列NA抑制剂浓度的。以下与MUNANA随后的温育后,通过未抑制病毒产生的4-MU在RFU通过荧光计测定。上的病毒的NA酶活性的NA抑制剂的抑制效果是根据以减小NA活性的50%所需的NA抑制剂浓度,给出作为IC 50值来计算。
1.确定荧光产物4-MU的一个荧光的线性范围
2.确定病毒的NA活性
注:流感病毒培养至在将Madin-Darby犬肾(MDCK)细胞或胚鸡蛋8足够滴度。
3.评估病毒易感性的NA抑制剂使用NA抑制测定
4.计算IC50值
注:JASPR V1.2是曲线拟合软件,使IC 50值的计算。该软件是由流感司在疾病预防控制中心,美国亚特兰大开发的。该软件利用等式:V = V 最大 ×(1 - ([I] /(K I + [I]))),其中V max是代谢的最大速率,[I]是抑制剂浓度,V是该响应被禁止,和K i是抑制曲线的IC 50。
从世界卫生组织工作组抗流感病毒易感性9的监控用标准化的报告准则,的流感病毒的NA抑制剂的敏感性使用的术语正常抑制(NI),降低的抑制(RI),和抑制高度还原的报道(HRI) 。 NI病毒是那些与IC超过10倍以下50个值相比,中值IC 50为参考A型流感病毒(或小于5倍为乙型流感病毒)。 RI病毒是那些具有10和100倍平均IC 50的基准为A型流感病毒(或5-和50倍的流感B)以上之间IC 50值。 HRI病毒是那些与IC中值IC 50的基准为A型流感病毒(或以上50倍为乙型流感病毒)100倍的50个值以上; 见表2。
中值IC基准为A(H1N1)pdm09,A(H3N2)和B山形/ B维多利亚病毒50个值被计算,每年在墨尔本WHOCCRRI更新,以反映的IC 50值的微小变化循环的流感病毒株的NA抑制剂( 表3)。流感A(H1N1)的中位IC 50值pdm09病毒是在四个NA抑制剂几乎相同,但中间扎那米韦和拉尼米韦IC为A(H3N2)病毒50倍的值是2至4倍相比奥司他韦和帕拉米韦IC 50个值( 表3)。对B型流感病毒的中位数奥塞米韦IC 50值通常为5至10倍比扎那米韦,培拉米韦,和拉尼米韦IC 50值( 表3)高。
的NA抑制测定是表型分析,不提供关于遗传变化associ信息ated与RI或HRI。因此,重要的是,遗传分析是以下的用RI或HRI病毒的鉴定进行。在墨尔本WHOCCRRI,变体的NA基因,使用Sanger测序和焦磷酸测序分析。的,可以在与RI和HRI变体病毒的NA基因中找到的氨基酸取代的代表性例子示于表4中 。可以改变NAI易感性的氨基酸替换一个更广泛的名单也可在世卫组织网站10。
图1: 针对4-MU浓度RFU。 (a)中针对4-MU浓度(μM)的RFU的标准曲线。虚线框示出了4-MU的用于荧光计的线性范围。线性范围以上的荧光信号可以是饱和的,并且因此,任何小号在荧光商场的变化可能不被荧光计来检测。 (b)中图1a的用于的识别标准曲线的特写线性部分"最佳目标信号"。在墨尔本WHOCCRRI荧光计具有2.5-40μM4-MU的线性范围和〜30μM4-MU的最佳目标信号,其对应于〜1500 RFU。 请点击此处查看该图的放大版本。
图2: 流感病毒的NA活性曲线的实施例。 50.61 RFU的平均背景值已从在NA活性曲线每次稀释点减去。箭头指示病毒适当稀释在NA抑制测定每种病毒的使用。为了方便准备病毒稀释液aration,可以选择用于病毒3代替的1/96稀释进行1/100稀释。 请点击此处查看该图的放大版本。
图3: 板布局为NA抑制测定的设置。每个板包括最后一列,其充当不包含病毒,但仅1×测定缓冲液(AB),NA抑制剂,MUNANA阴性对照,和终止液。注:JASPR使用读数从每块板的第12列以确定IC 50值的计算中使用的平均空白信号。 请点击此处查看该图的放大版本。
图4: 一个A(H1N1)病毒pdm09,A /珀斯/ 82/2015 的抑制曲线和IC 50 值 的实施例 。该JASPR软件呈现针对NA抑制剂浓度的增加(nM)的抑制曲线作为荧光(RFU),所述曲线中的每个点拟合。基于抑制曲线上,则IC 50值确定为NA抑制剂的浓度,以减少病毒NA活性的50%。 请点击此处查看该图的放大版本。
病毒 | 需要稀释病毒 | 1X测定缓冲液体积(μL) | 表面活性剂的安培-NP-40(10%)(mL)的 | 病毒体积(mL) |
1 | 1/20 | 940 | 10 | 50 |
2 | 1/40 | 965 | 10 | 25 |
3 | 1/100 | 890 | 10 | 10 |
表1:病毒稀释液中的NA抑制测定用于制备病毒1,2,和3。
病毒类型/子类型/谱系 | 普通抑制 | 抑制减少 | 高度降低的抑制 |
(NI) | (RI) | (HRI) | |
A(H1N1)pdm09 | <10倍 | 10-100倍 | > 100倍 |
A(H3N2) | &#60; 10倍 | 10-100倍 | > 100倍 |
乙山形和B维多利亚 | <5倍 | 5-50倍 | > 50倍 |
表2:WHO抗病毒药工作组建议指引流感病毒易感性的NA抑制剂的分类。
病毒类型/子类型/谱系 | ñ | 扎那米韦 | 奥司他韦 | 帕拉米韦 | 拉尼米韦 |
中位数(范围)IC 50 nM的 | 中位数(范围)IC 50 nM的 | 中位数(范围)IC 50 nM的 | 中位数(范围)IC 50 nM的 | ||
A(H1N1)pdm09 | 1326 | 0.42(0.1-3.43) | 0.36(0.01-3.48) | 0.19(0.07-1.60) | 0.55(0.05-2.29) |
A(H3N2) | 1654 | 0.9(0.11-4.0) | 0.38(0.01-3.65) | 0.33(0.12-3.06) | 1.38(0.01-9.38) |
乙山形和B维多利亚 | 1115 | 2.2(1.24-10.72) | 15.12(2.39-70.75) | 1.36(0.57-6.67) | 2.89(1.62-9.15) |
表3:中值IC 50 和IC 50 范围内的正常的抑制(NI)从2015年病毒在WHO CCRRI,墨尔本的。
氨基酸取代 | 类型/亚型/谱系 | IC 50的倍数变化共mpared参考中值IC 50值。 | |||
扎那米韦 | 奥司他韦 | 帕拉米韦 | 拉尼米韦 | ||
H275Y | A(H1N1)pdm09 | 1 | 557(HRI) | 123(HRI) | 2 |
E119V | A(H3N2) | 1 | 63(RI) | 1 | 1 |
H134Y | 乙维多利亚 | 1 | 4 | 76(HRI) | 2 |
N151T | 乙维多利亚 | 4 | 4 | 42(HRI) | 1 |
G104E | 乙维多利亚 | 1220(HRI) | 87(HRI) | 17724(HRI) | 701(HRI) |
E105K | 乙维多利亚 | 3 | 5(RI) | 59(HRI) | 2 |
I222T | 乙维多利亚 | 2 | 7(RI) | 8(RI) | 3 |
H273Y | 乙山形 | 1 | 230(HRI) | 377(HRI) | 2 |
D197N | 乙山形 | 4 | 7(RI) | 32(RI) | 3 |
表4:链接到降低抑制(RI)或高度还原的抑制(HRI),以NA抑制剂氨基酸取代代表清单。
问题 | 可能的原因(S) | 解决方案(S) |
无或低的NA活性 | 没有病毒存在或低病毒产量。 | 临床标本必须在细胞系中进行培养( 即将Madin-Darby犬肾细胞)或在含胚鸡卵到在NA抑制测定使用较高的病毒负荷。 |
一些突变病毒具有非常低的NA活性,尽管在高病毒载量。 | 用整齐的病毒浓度进行测试。可以使用较低的pH值的测定缓冲液( 例如 pH 5.3)。然而,在比较数据时一定要小心。 | |
否或在NA抑制测定低NA活性 | 不加入病毒。 | 再稀释病毒。确保病毒被直接加入到1×测定缓冲液中。 |
在使用了错误的病毒稀释。 | 重复NA活性测定。 | |
没有足够的孵化时间。 | 确保孵育时间之后。 | |
数据点落在IC 50曲线外 | 较高浓度的NA抑制剂交叉污染。 | 确保提示是不与NA INHIBI接触TOR分配稀释病毒到96孔板中时。 |
如果使用一个8深井水库,丢弃和重新分配NA抑制剂浓度到一个新的8深井水库。 | ||
的NA抑制剂或MUNANA或稀释的病毒的体积不是同样加入到每个孔中。 | 重复用校准的多通道移液器测定。确保每个试剂的等体积分配到每个孔中。 | |
异常高的IC 50值 | 加入病毒的浓度过高。 | 重复NA活性测定和NA抑制测定。 |
测试样品含有流感A和流感B的混合物 | 进行实时PCR,以确定病毒混合物的存在。 | |
样品中的细菌污染 | 与抗生素存在的无菌条件下培养病毒。 | |
高背景荧光信号 | MUNANA衬底可以随时间降解。 | 使用新一批MUNANA subtrate的。 |
从邻近井的荧光检测。 | 使用黑色96孔平底板 |
表5:在NA抑制测定潜在的问题进行故障排除。
流感病毒易感性NA抑制剂的全球监测当前正在通过使用荧光或化学发光NA抑制测定11,12许多实验室进行。荧光测定法比化学发光测定更常用。虽然这两个测定法是健壮和可再现的,从基于荧光的测定中获得的IC 50值通常比基于化学发光的测定法更高,使得来自两个试验难以13的数据直接比较。即使使用相同的协议的,从一个实验室产生的数据可以从另一个会有所不同。由于实验室之间的这些变化,世卫组织工作组抗流感病毒敏感性监测生产的指导方针,以协助实验室间的比较。而不是比较绝对IC 50值,该指南使用基于IC 50倍的差异,以中位数在每个特定的实验室测试的NI流感病毒的IC 50 SA比较。比较从五个协作中心数据的能力已导致全球流感抗病毒药物敏感性数据的2,3,4年出版。在公共领域的大量流感易感数据的可用性,使研究人员从与在自己的实验室中产生的研究将IC 50个数据。
即采取类似的概念之外NA抑制实验也可购得。包含准备使用的试剂,这些商业试剂盒(抑制剂不包括NA)同样可重复性。然而,在内部NA抑制测定比商业试剂盒基本上便宜,因为大多数所用试剂可以在内部中进行较大的量和MUNANA衬底,其先前由该测定的主要成本,现在可以从各种源竞争力的价格购买。每种药物测试一个流感分离物的成本大约是$ 1(USD)。在墨尔本WHOCCRRI,做了改进,以在内部NA抑制测定的机器人平台的掺入用于测定的液体处理组件之后。除了病毒稀释度的手动制备,大部分的程序所使用的处理液体的机械臂来执行。这不仅最大限度地减少人工处理,但同时也增加了可在一天内运行试验的数量。
虽然NA抑制测定是高度可靠,有许多的需要用额外的小心完成关键步骤。首先,在NA抑制剂浓度可以转移抑制曲线和IC 50值的任何不规则性;因此,应小心谨慎制备NA抑制剂浓度时支付。其次,准确吸取和精确的潜伏期是保持整个检测结果的一致性至关重要;这可以通过使用校准的移液管和定时器来实现。控制病毒在每次试验中包括也使的检测性能从试验到检测,并在很长一段时间的监控。第三,由于季节性流感病毒的NA的酶活性是在pH 6.5最佳,测定缓冲液的正确的pH是重要的。一些报道已经发现,使用较低的pH条件下可以改善流感变体,如含有R292K突变14,15 A(H7N9)变体的鉴定。然而,修改至测定缓冲液的pH将转向的IC 50值,这可能实验室内和实验室之间数据的比较复杂化。其他的修改和故障排除,可以是performed列于表5中 。
该NA抑制剂是唯一批准的类抗病毒药物是目前对抗循环流感病毒有效。直到其他抗病毒类临床使用变得可用,流行的流感病毒的抗病毒易感性的监视将仅集中在NA抑制剂。由于简单性和结果的再现性,使用NA抑制试验,以评估流感病毒易感性的NA抑制剂将继续。
作者什么都没有透露。
墨尔本世界卫生组织合作中心的参考与研究流行性感冒是由健康的澳大利亚政府部门的支持。
Name | Company | Catalog Number | Comments |
Influenza A and B viruses | Cultured in MDCK cells or 9 day old embryonated specific pathogen free (SPF) eggs | ||
Madin-Darby Canine Kidney (MDCK) cells | ATCC | PTA-6500 | |
2-(4-methylumbelliferyl)-a-D-N-acetylneuraminic acid (MUNANA) | Biosynth AG | M-5507 | |
2-(4-methylumbelliferyl)-a-D-N-acetylneuraminic acid (MUNANA) | Sigma | M8639 | |
4-Methylumbelliferone (4-MU) | Sigma | M1381-25G | |
2-[N-morpholino]ethanesulphonic acid (MES hydrate) (free acid) | Sigma | M8250-250G | |
Calcium Chloride (Ca Cl2) | APS AJAX Finechem | 127-500G | |
Surfactant-Amps-NP-40 (10% solution) | Thermo Fisher Scientific | PIE28324 | |
Sodium Hydroxide (NaOH) | APS AJAX Finechem | 482-2.5KG | |
Absolute Ethanol | APS AJAX Finechem | 214-2.5L GL | |
96-well clear flat-bottom plates | NUNC | 456537 | |
96-well U-bottom plates | Greiner Bio-one | 4650101 | |
8 channel deep well block | Pacific Laboratory Products | RES-MW8-HP | |
96-well deep plates, 2.0 mL square wells | Pacific Laboratory Products | P-2ML-SQ-C | |
Plate sealers | Thermo Fisher Scientific | 236366 | |
Bottle-top vacuum filter system (cellulose membrane (nitrate), pore size 0.2 μm, membrane area 33.2 cm2, filter capacity 500 mL) | Sigma-Aldrich | CLS430758-12EA | |
Single-channel pipettes (1 µL - 1,000 µL) | Variety of suppliers (eg. Eppendorf, Sartorius) | ||
Multi-channel pipettes | Variety of suppliers (eg. Eppendorf, Sartorius) | 8 or 12 channel electronic and manual pipette (5 - 1250 µL volume) | |
Pipette tips (1 µL - 1,250 µL) | Variety of suppliers (eg. Eppendorf, Sartorius) | ||
Disposable pipettes (10 mL and 25 mL) | Greiner Bio-one | P7740-200EA and P7865-200EA | |
Pipette controller | Eppendorf | 4430000018 | |
Centrifuge tubes 50 mL | BD Bioscience | 352070 | |
Racked tubes | Scientific Specialties, Inc. | 1750-00 | |
Fluorometer with excitation wavelength setting of 355 nm and an emission wavelength setting of 460 nm | TermoFisher Scientific | ASCENT FL 374 | |
Ascent software | TermoFisher Scientific | 5185410CD | |
Incubator set at 37 °C | Lab Supply | Biocell 1000 | |
Zanamivir | GlaxoSmithKline | Request directly from the company | |
Oseltamivir carboxylate | Roche | ||
Peramivir (BCX-1812) | BioCryst | ||
Laninamivir (R-125489) | Daiichi-Sankyo | ||
JASPR v1.2 | Influenza Division at the CDC Atlanta, USA | freely available upon request (fluantiviral@cdc.gov) |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。