登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该技术的目的是通过肺膨胀和通过肺动脉注射放射性不透明聚合物化合物,对早期产后小鼠和成年小鼠的肺动脉网络进行活体可视化。还讨论了铸造组织的潜在应用。

摘要

血管在三维空间中形成复杂的网络。因此,很难通过观察组织表面来直观地理解血管网络是如何相互作用和表现的。该方法提供了一种可视化肺部复杂三维血管结构的方法。

为此,导管插入肺动脉,血管同时冲洗血液和化学扩张,以限制阻力。然后,肺以标准压力通过气管膨胀,聚合物化合物以标准流速注入血管床。一旦整个动脉网络被填充并允许治愈,肺血管可以直接可视化或在微CT (μCT) 扫描仪上成像。

当手术成功时,可以欣赏从产后早期到成人的小鼠肺动脉网络。此外,在肺动脉床中演示时,此方法可应用于任何具有优化导管放置和端点的血管床。

引言

该技术的重点是使用小鼠聚合物化合物的肺动脉结构可视化。虽然在脑、心脏,和肾脏,1、2、3、4、5,2,3等全身血管病床上进行了广泛的工作,但有关肺动脉网络的准备和填充的信息较少。4因此,本研究的目的是扩展先前的工作6,7,8,7,8并提供详细的书面和视觉参考,调查人员可以很容易地遵循,以产生肺动脉树的高分辨率图像。

虽然有许多方法存在标记和成像肺血管,如磁共振成像,超声心动图,或CT血管造影9,9,10,其中许多模式未能充分填充和/或捕获小血管,限制了可以研究的范围。串行分段和重建等方法提供高分辨率,但时间/劳动密集型11,12,13。,1311,在传统的腐蚀铸造10、13、14、15、16中10,13,14周围的软组织,完整性受到损害。甚至动物的年龄和大小也成为因素,当试图引入导管或,分辨率是缺乏的。另一方面,聚合物注射技术将动脉填充到毛细管水平,当与 +CT 结合使用时,可实现无与伦比的分辨率 5。从小到产后第14天的小鼠肺部样本已成功施用8个,并在几个小时内得到处理。这些可以无限期地重新扫描,甚至发送组织学准备/电子显微镜(EM),而不损害现有的软组织17。此方法的主要限制是 CT 设备/软件的前期成本、准确监测血管内压力方面的挑战,以及无法在同一动物中纵向获取数据。

本文以现有工作为根据,进一步优化肺动脉注射技术,将年龄/尺寸相关边界推至产后第1天(P1),取得显著效果。对于想要研究动脉血管网络的团队来说,这是最有用的。因此,我们为导管放置/稳定提供新的指导,加强对填充率/体积的控制,并突出提高铸造成功率的显著缺陷。然后,结果铸件可用于未来的表征和形态分析。也许更重要的是,据我们所知,这是引导用户完成这个复杂过程的第一个视觉演示。

研究方案

此处描述的所有方法都已获得国家心肺和血液研究所的机构动物护理和使用委员会 (ACUC) 的批准。

1. 准备

  1. 将小鼠内向注入肝素(1单位/克小鼠体重),并允许其调节2分钟。
  2. 在CO2室中对动物实施安乐死
  3. 将鼠标放在手术板上的超前位置,用胶带将四肢固定到手术板上。使用放大镜进行精细解剖。

2. 暴露肺部和气管

  1. 用70%乙醇喷洒小鼠的腹侧,以尽量减少头发干扰。
  2. 用钳子抓住腹部皮肤,在脐带区域用剪刀做一个小切口。将剪刀尖滑入腹部肌肉和皮肤之间的筋膜层,并开始分离两层。用玫瑰色,去除腹部、肋骨和颈部的皮肤。
  3. 用剪刀打开腹部肌肉,在两侧横向切割,直到隔膜暴露。
  4. 轻轻抓住西腓过程,稍微抬起肋骨,通过薄的半透明隔膜最大化肺的视图。小心地在西腓工艺下方的隔膜上做一个小切口。肺部会塌陷,从隔膜上缩回。将隔膜从肋骨上解剖,注意不要划破肺膜。
  5. 找到并切断劣质的维纳卡瓦 (IVC) 和食道, 在那里他们通过隔膜。使用纱布清理胸腔中任何汇集的血液,避免与肺部接触。
  6. 再次抓住西腓, 轻轻地抬起。双边切开肋骨(大致在中轴线),避免与肺部接触。完全拆下前肋骨,在毛骨之前沿胸角进行最后的切割。
  7. 使用预填充注射器,用磷酸盐缓冲盐水(PBS,pH 7.4)自由湿润肺部,以防止干燥。在整个过程中继续此例程。
  8. 使用钳子,抓住毛化,轻轻地从身体中抬起。使用剪刀,将 1-2 mm 的横向切割到毛骨管,切断夹骨,然后取出。这将暴露下面的胸腺。
  9. 抓住胸腺的每个叶,拉开,然后取出。使用亚多膜腺体重复此过程。最后,去除覆盖气管的肌肉组织。
    注:解剖后,心脏、升主动脉(AA)、肺动脉躯干(PAT)和气管应可见。确保主动脉从树干上没有分裂或受伤。

3. PA导管和血液灌注

  1. 组装单元 1,将 15 厘米 PE-10 管线连接到 30 G 针的轮毂上,并连接到 PBS 中预加 10-4 M 硝化钠 (SNP) 的 1 mL 注射器上。通过推进柱塞来为油管加上,直到从该装置中清除所有空气(图1)。
    注意: 如果吞咽, Snp 是有毒的。避免接触皮肤和眼睛。处理后彻底清洗皮肤。穿戴适当的个人防护装备。
    1. 或者,组装单元 2。对于产后第 7 天 (P7) 及以下小鼠,使用 hemostat 将额外的 30 G 针从轮毂中分离出来,然后将针头插入单元 1 的管材的开端(图 1)。
  2. 而不是针,使用弯曲锋利的钳子抓住一端10厘米长的7-0丝绸。穿透心脏的顶点从一侧进入,并通过肌肉和另一侧的钳子尖。用另一组钳子抓住丝绸,拉大约2厘米长,然后系上领带。以缝合线的剩余8厘米结束,用毛毛拉扯心脏,将手术板的端子卷到手术板上。
    注:这将造成紧张,进一步暴露伟大的血管和连接心脏到位,使更容易放置导管在肺动脉。
  3. 在 AA 和 PAT 下钩住弯曲钳子的尖端。通过开口将 3 厘米长的 7- 0 丝拉回,并创建单掷松缝合线。
  4. 使用剪刀向心脏顶点切开 1-2 mm 的切口,穿透薄壁右心室 (RV),以便插入导管(单元 1)。插入之前,确认系统中没有空气。将底管引入右心室,轻轻推进到半透明薄壁 PAT 中。
    1. 目视验证导管未进进左肺或右肺支点,且未与肺动脉分支点并起。使用胶带,将管子的后半部分固定到手术板上。
      注:要识别房车,请使用钳子捏住心脏的右侧。与左心室不同,RV 相对薄的自由壁应易于抓住。
    2. 对于小于 P7 的小鼠,将单元 2 连接到微操纵器上,并使用上述操作器将单元的针端引入 PAT 中。
  5. 轻轻拧紧两个大容器周围的松散缝合线,并切割步骤 3.2 中创建的 8 厘米长的缝合线,使心脏恢复自然静止位置。导管现在牢固地固定在 PAT 内。
  6. 夹住心脏的左尿,让香水退出系统。
  7. 将含有SNP的注射器(第1单元或2单元,大小取决于)固定在注射器泵中,以0.05 mL/min的速度对溶液进行吸附,以冲洗血液并最大地扩张血管。血液/香水会通过被夹住的尿道退出。继续灌注,直到灌注运行清晰(+200μL在成年小鼠,较少为年轻的动物)。
    注:在高粘度PBS/SNP中,为了节省时间,使用相对较高的输液率。更粘稠的聚合物化合物以较慢的速度注入,以防止过度填充、破裂,并最大限度地控制端点。

4. 气管切除术和肺通货膨胀

  1. 构建肺膨胀单元(图2)。
    1. 将一个灵活的塑料 24 G 静脉注射 (IV) 导管(取出针头)/蝴蝶输液设置为插管,连接到打开的 50 mL 注射器(无柱塞)。将注射器从环架上吊上。
    2. 向注射器中加入10%缓冲的甲醛。打开塞子,允许甲醛进入油管,并清除系统中的所有空气。关闭止毒针并提高注射器,直到半月板高于气管820厘米
      注意:甲醛是易燃、致癌、摄入时剧毒的,并引起皮肤刺激、严重眼部损伤、皮肤敏感和生殖细胞诱变。避免摄入和接触皮肤和眼睛。避免吸入蒸汽或雾气。远离点火源。穿戴适当的个人防护装备。
  2. 将两个松散的缝合线放在低于小软骨的 2-4 mm 之间。
  3. 使用剪刀,使一个小切口在小切口的肌腱韧带优于缝合线。
  4. 将 IV 导管插入开口,将尖端推进到两个松动的缝合线之外。
  5. 拧紧气管周围的缝合线,然后打开止损器。允许甲醛通过重力进入肺部,等待5分钟,让肺部完全膨胀。如果肺在通货膨胀期间粘附在肋骨上,用钝尖钳抓住肋骨的外方,并向各个方向移动,以帮助释放叶。不要直接接触肺部。
  6. 5分钟后,将静脉导管放回第一缝合线和粘液线之外。对第二个缝合重复。肺部现在以封闭、加压状态膨胀。

5. 铸造血管

  1. 在1.5 mL管中,准备1 mL的8:1:1溶液8 的聚合物:稀释剂:固化剂,并轻轻反转几次,以确保良好的混合。
  2. 从 1 cc 注射器中取出柱塞,用戴手套的手指盖住对方端,然后将聚合物化合物倒入注射器中。小心地重新插入柱塞,反转,并推进柱塞,以去除所有空气,并在注射器尖端形成半月板。
  3. 从针头轮毂上取出 SNP/PBS 注射器,将额外的 PBS 滴入轮毂以创建半月板。仔细检查轮毂是否被困空气,必要时进行开气,并改造半月板。将轮毂加入充满聚合物化合物的注射器。
    注:在两端创建半月板会显著减少空气进入系统的机会。
  4. 将聚合物化合物填充注射器连接到注射器泵,并在 0.02 mL/min 时注入。
    注意:对于较小的肺,较慢的速度可以帮助防止过度填充,但不是必要的。
  5. 监测化合物,因为它自由向下移动PE管,并注意到注射器体积,因为它进入PAT。继续填充,直到所有叶完全填充到毛细管水平,并停止注射器泵。再次检查注射器体积。
    注:多次运行后,估计体积可用于测量近似端点(成人鼠标为±35 μL,P1幼崽为±5μL)。泵停止后,系统中的残余压力将继续将聚合物化合物推入肺动脉。所有肺叶应以类似的速度填充。
  6. 用光纤清洁擦拭覆盖肺部,自由应用 PBS,让尸体在室温下不受干扰地坐 30-40 分钟。在此期间,聚合物化合物将固化和硬化。
  7. 拆下导管,切断鼠标的手臂/下半部分,将头/胸部分放入一个 50 mL 圆锥体中,圆锥体中填充 10% 缓冲的甲醛过夜。
  8. 固定后,抓住气管,轻轻地将心肺单元与剩余的肋骨笼和胸部分离。将心/肺块放在填充的符号瓶中。丢弃其余的。

6. 铸造的替代血管床(表1)

注:每个靶点血管床可能需要不同的导管放置、输液率和最佳填充时间。因此,需要多种动物来铸造多个器官。

  1. 对于高于或低于隔膜的全身血管床,请遵循上述步骤1.1-2.5。请参阅门户系统和隔膜上的其他注释(表 1)。
  2. 抓住西腓过程与海莫斯特和削减肋骨双边(大致在中轴线)之前的内部胸动脉。
  3. 折叠仍然连接的肋骨,使其靠在动物的颈部/头部,完全暴露胸腔。
  4. 按照上面的步骤3.1,然后切除肺部。一旦胸大项大项 (TA) 可见,将弯曲钳子的尖端钩在它下面,比隔膜高 10 mm。抓住一个3厘米长的7-0丝绸,拉回通过TA下的开口,并创建一个单掷松散缝合线。重复此过程 ,在隔膜上方 8 mm。
  5. 对于优于隔膜的结构,使用弹簧剪刀在 TA 的腹体部分创建一个小孔(占总周长的 ±30),比步骤 6.4 中放置的松散缝合线低 2 mm。
    1. 对于低于隔膜的结构,则创建一个比松散缝合线优于 2 mm 的小孔。
  6. 根据动物的大小,将1号或2号单元引入容器中,超越松动的缝合线前进,轻轻将容器压上。
  7. 按照步骤 3.7,将注射器泵设置为 1.0 mL/min,并至少吸5 mL。香水将退出通过 IVC。
  8. 按照步骤 5.1 - 5.4 将输液率调整为 0.05 mL/min,实时直观地监控目标组织。
    注:输液量将是器官和动物年龄的特异性。通过连接动脉分支导致非靶向血管床(即大脑、肝脏、肾脏、肠道)的连结,可以进一步限制体积。
  9. 遵循 5.6,然后取出目标组织并放在形式素中。

7. 微CT的样品安装、扫描和重建

  1. 使用石蜡薄膜,在扫描床上创建一个平面,并在此表面上将湿样品居中(图3A)。
    注:如果检测到运动伪影,样品可能需要进一步稳定。
  2. 用额外的石蜡膜轻轻帐篷/盖样品,以防止脱水。特别注意不要将石蜡膜放在样品上,导致组织变形(图3B)。
  3. 使用表 2 中概述的 设置扫描示例 ,并在给定实验中标准化这些参数。
    注意:这与实验/终结点相关。标准化所选参数,以便于比较样本。
  4. 转移重建的扫描以进行后期处理和分析。

结果

一个成功的演员将展示整个肺动脉网络的均匀填充。我们在C57Bl/6J小鼠中演示了这一点:产后一天P90(4A)、P30(图4B)、P7(图4C)和P1(图4D)。通过控制流量和目视监测填充的实时,最远程血管的可靠终点实现了(图5A)。

讨论

正确执行,这种方法产生肺动脉网络的惊人图像,允许在啮齿动物模型中进行比较和实验。沿途的几个关键步骤确保了成功。首先,调查人员必须在准备阶段对动物进行肝素化,以防止血块在肺血管和心脏腔室中形成。这允许聚合物化合物的完全动脉传递。其次,当刺穿隔膜和去除肋骨时,注意保护肺部免受意外伤害、割伤或伤害。气道中的任何泄漏都会防止完全膨胀,使样品之间的比较不准确?...

披露声明

作者没有什么可透露的

致谢

这项研究部分得到了NHLBI校内研究计划(DIR HL-006247)的支持。我们要感谢NIH鼠标成像设施在图像采集和分析方面的指导。

材料

NameCompanyCatalog NumberComments
1cc syringeBecton Dickinson309659
20ml Glass Scintillation VialsFisher03-340-25P
30G NeedleBecton Dickinson305106
50mL conical tubesCornin352098For sample Storage and scanning
60cc syringeBecton Dickinson309653
7-0 silk sutureTeleflex103-S
Analyze 12.0 SoftwareAnalyzeDirect Inc.N/APrimary Software
Amira 6.7 SoftwareThermo ScientificN/AAlternative Sofware
CeramaCut Scissors 9cmFine Science tools14958-09
Ceramic Coated Curved ForcepsFine Science tools11272-50
CO2 TankRobert's Oxygen Co.n/a
Dual syringe pumpCole ParmerEW-74900-10
Dumont Mini-ForcepsFine Science tools11200-14
EthanolPharmco111000200
FormalinSigma - Life SciencesHT501128
GauzeCovidien441215
HemostatFine Science tools13013-14
Heparin (1000USP Units/ml)HospiraNDC 0409-2720-01
Horos SoftwareHoros ProjectN/AAlternative Sofware
induction chambern/an/a
KimwipeFisher06-666fiber optic cleaning wipe
Labelling TapeFisher15966
Magnetic BaseKanetecN/A
Micro-CT systemSkyScan 1172
Microfil (Polymer Compound)Flowech Inc.Kit B - MV-1228 oz. of MV compound; 8 oz. of diluent; MV-Curing Agent
MicromanipulatorStoelting56131
Monoject 1/2 ml Insulin SyringeCovidien1188528012
Octagon Forceps Straight TeethFine Science tools11042-08
ParafilmBemis company, Inc.#PM999
PE-10 tubingInstechBTPE-10
Phospahte buffered SalineBioRad#161-0780
Ring StandFisherS13747Height 24in.
Sodium Nitroprussidesigma71778-25G
Steel PlateN/AN/A16 x 16 in. area, 1/16 in thick
Straight Spring ScissorsFine Science tools15000-08
SURFLO 24G Teflon I.V. CatheterSanta Cruz Biotechnology360103
Surgical BoardFisher12-587-20This is a converted slide holder
Universal 3-prong clampFisherS24280
Winged Inf. Set 25X3/4, 12" TubingNiproPR25G19
Zeiss Stemi-508 Dissection ScopeZeissn/a

参考文献

  1. Vasquez, S. X., et al. Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS One. 6 (4), 19099 (2011).
  2. Hong, S. H., et al. Development of barium-based low viscosity contrast agents for micro CT vascular casting: Application to 3D visualization of the adult mouse cerebrovasculature. Journal of Neuroscience Research. 98 (2), 312-324 (2019).
  3. Perrien, D. S., et al. Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrology. 17, 24 (2016).
  4. Weyers, J. J., Carlson, D. D., Murry, C. E., Schwartz, S. M., Mahoney, W. M. Retrograde perfusion and filling of mouse coronary vasculature as preparation for micro computed tomography imaging. Journal of Visualized Experiments. (60), e3740 (2012).
  5. Zhang, H., Faber, J. E. De-novo collateral formation following acute myocardial infarction: Dependence on CCR2(+) bone marrow cells. Journal of Molecular and Cellular Cardiology. 87, 4-16 (2015).
  6. Kim, B. G., et al. CXCL12-CXCR4 signalling plays an essential role in proper patterning of aortic arch and pulmonary arteries. Cardiovascular Research. 113 (13), 1677-1687 (2017).
  7. Counter, W. B., Wang, I. Q., Farncombe, T. H., Labiris, N. R. Airway and pulmonary vascular measurements using contrast-enhanced micro-CT in rodents. American Journal of Physiology Lung Cellular and Molecular Physiology. 304 (12), 831-843 (2013).
  8. Phillips, M. R., et al. A method for evaluating the murine pulmonary vasculature using micro-computed tomography. Journal of Surgical Research. 207, 115-122 (2017).
  9. Schuster, D. P., Kovacs, A., Garbow, J., Piwnica-Worms, D. Recent advances in imaging the lungs of intact small animals. American Journal of Respiratory Cell and Molecular Biology. 30 (2), 129-138 (2004).
  10. Samarage, C. R., et al. Technical Note: Contrast free angiography of the pulmonary vasculature in live mice using a laboratory x-ray source. Medical Physics. 43 (11), 6017 (2016).
  11. Grothausmann, R., Knudsen, L., Ochs, M., Muhlfeld, C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. American Journal of Physiology Lung Cellular and Molecular Physiology. 312 (2), 243-257 (2017).
  12. Hayworth, K. J., et al. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits. 8, 68 (2014).
  13. Bussolati, G., Marchio, C., Volante, M. Tissue arrays as fiducial markers for section alignment in 3-D reconstruction technology. Journal of Cellular and Molecular Medicine. 9 (2), 438-445 (2005).
  14. Preissner, M., et al. Application of a novel in vivo imaging approach to measure pulmonary vascular responses in mice. Physiological Reports. 6 (19), 13875 (2018).
  15. Junaid, T. O., Bradley, R. S., Lewis, R. M., Aplin, J. D., Johnstone, E. D. Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease. Scientific Reports. 7 (1), 4144 (2017).
  16. Bolender, R. P., Hyde, D. M., Dehoff, R. T. Lung morphometry: a new generation of tools and experiments for organ, tissue, cell, and molecular biology. American Journal of Physiology. 265 (6), 521-548 (1993).
  17. Savai, R., et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia. 11 (1), 48-56 (2009).
  18. Ehling, J., et al. Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. American Journal of Pathology. 184 (2), 431-441 (2014).
  19. Sueyoshi, R., Ralls, M. W., Teitelbaum, D. H. Glucagon-like peptide 2 increases efficacy of distraction enterogenesis. Journal of Surgical Research. 184 (1), 365-373 (2013).
  20. Zhang, H., Jin, B., Faber, J. E. Mouse models of Alzheimer's disease cause rarefaction of pial collaterals and increased severity of ischemic stroke. Angiogenesis. 22 (2), 263-279 (2019).
  21. Faight, E. M., et al. MicroCT analysis of vascular morphometry: a comparison of right lung lobes in the SUGEN/hypoxic rat model of pulmonary arterial hypertension. Pulmonary Circulation. 7 (2), 522-530 (2017).
  22. Fisher, S., Burgess, W. L., Hines, K. D., Mason, G. L., Owiny, J. R. Interstrain Differences in CO2-Induced Pulmonary Hemorrhage in Mice. Journal of the American Association for Laboratory Animal Science. 55 (6), 811-815 (2016).
  23. Munce, N. R., et al. Intravascular and extravascular microvessel formation in chronic total occlusions a micro-CT imaging study. JACC Cardiovascular Imaging. 3 (8), 797-805 (2010).
  24. Shifren, A., Durmowicz, A. G., Knutsen, R. H., Faury, G., Mecham, R. P. Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure. Journal of Applied Physiology. 105 (5), 1610-1619 (2008).
  25. Sonobe, T., et al. Imaging of the closed-chest mouse pulmonary circulation using synchrotron radiation microangiography. Journal of Applied Physiology (1985). 111 (1), 75-80 (2011).
  26. Ritman, E. L. Micro-computed tomography of the lungs and pulmonary-vascular system. Proceedings of the American Thoracic Society. 2 (6), 477-480 (2005).
  27. Dinkel, J., et al. Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging. Circulation: Cardiovascular Imaging. 1 (3), 235-243 (2008).
  28. Ashton, J. R., West, J. L., Badea, C. T. In vivo small animal micro-CT using nanoparticle contrast agents. Frontiers in Pharmacology. 6, 256 (2015).
  29. Ford, N. L., Thornton, M. M., Holdsworth, D. W. Fundamental image quality limits for microcomputed tomography in small animals. Medical Physics. 30 (11), 2869-2877 (2003).
  30. Boone, J. M., Velazquez, O., Cherry, S. R. Small-animal X-ray dose from micro-CT. Molecular Imaging. 3 (3), 149-158 (2004).
  31. Giuvarasteanu, I. Scanning electron microscopy of vascular corrosion casts--standard method for studying microvessels. Romanian Journal of Morphology and Embryology. 48 (3), 257-261 (2007).
  32. Polguj, M., et al. Quality and quantity comparison study of corrosion casts of bovine testis made using two synthetic kits: Plastogen G and Batson no 17. Folia Morphologica (Warsz). 78 (3), 487-493 (2019).
  33. Verli, F. D., Rossi-Schneider, T. R., Schneider, F. L., Yurgel, L. S., de Souza, M. A. Vascular corrosion casting technique steps. Scanning. 29 (3), 128-132 (2007).
  34. Azaripour, A., et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Progress in Histochemistry and Cytochemistry. 51 (2), 9-23 (2016).
  35. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  36. Albers, J., Markus, M. A., Alves, F., Dullin, C. X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Scientific Reports. 8 (1), 7712 (2018).
  37. Katsamenis, O. L., et al. X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology. American Journal of Pathology. 189 (8), 1608-1620 (2019).
  38. Morales, A. G., et al. Micro-CT scouting for transmission electron microscopy of human tissue specimens. Journal of Microscopy. 263 (1), 113-117 (2016).
  39. Wen, H., et al. Correlative Detection of Isolated Single and Multi-Cellular Calcifications in the Internal Elastic Lamina of Human Coronary Artery Samples. Scientific Reports. 8 (1), 10978 (2018).
  40. Zamir, A., et al. Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments. Scientific Reports. 6, 31197 (2016).
  41. Yu, B., et al. Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue. Optics Express. 26 (9), 11110-11124 (2018).
  42. Bidola, P., et al. Application of sensitive, high-resolution imaging at a commercial lab-based X-ray micro-CT system using propagation-based phase retrieval. Journal of Microscopy. 266 (2), 211-220 (2017).
  43. Norvik, C., et al. Synchrotron-based phase-contrast micro-CT as a tool for understanding pulmonary vascular pathobiology and the 3-D microanatomy of alveolar capillary dysplasia. American Journal of Physiology Lung Cellular and Molecular Physiology. 318 (1), 65-75 (2020).
  44. Weibel, E. R. Lung morphometry: the link between structure and function. Cell and Tissue Research. 367 (3), 413-426 (2017).
  45. Hsia, C. C., Hyde, D. M., Ochs, M., Weibel, E. R. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. American Journal of Respiratory and Critical Care Medicine. 181 (4), 394-418 (2010).
  46. Sarhaddi, D., et al. Validation of Histologic Bone Analysis Following Microfil Vessel Perfusion. Journal of Histotechnology. 35 (4), 180-183 (2012).
  47. Ehling, J., et al. Quantitative Micro-Computed Tomography Imaging of Vascular Dysfunction in Progressive Kidney Diseases. Journal of the American Society of Nephrology. 27 (2), 520-532 (2016).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

160

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。