Method Article
量化膝盖扩展或最大强度是了解功能适应老化,疾病,受伤和康复的必要条件。我们提出了一种新方法,可以反复测量体内膝盖延伸等轴测峰值破伤风扭矩。
骨骼肌可塑性,以回应无数的条件和刺激调解并发功能适应,无论是消极的还是积极的。在临床和研究实验室中,人类纵向广泛测量最大肌肉力量,其中膝盖外显肌肉是报告最多的功能结果。膝关节拉除肌复合物的病理学在衰老、骨科损伤、疾病和不使用方面有充分的记载:膝关节拉长强度与功能能力和受伤风险密切相关,突出了可靠测量膝关节外力的重要性。临床前啮齿动物研究中膝关节增生强度的可重复、活体评估为探索骨关节炎或膝伤的研究提供了宝贵的功能终点。我们报告一个体内和非侵入性协议,以反复测量小鼠膝盖外显子的等轴测峰值破伤风扭矩。我们使用这种新方法在多个小鼠中反复评估,以测量膝盖扩展器强度,并证明其一致性,结果相似。
骨骼肌是一种适应性很强的组织,对质量和结构进行补偿性改变,以应对无数的刺激,如运动、营养、损伤、疾病、衰老和不使用。许多研究研究骨骼肌适应在人类使用的方法来测量骨骼肌肉的大小和对功能的影响,因为黄金标准的强度评估很容易重复在人类受试者。
具体来说,在临床研究中,对膝关节扩展器和屈肌强度的评价最高。在人类对衰老、运动、骨科损伤、膝骨关节炎、慢性病和1、2、3、4、5、6、7的不使用的研究中,对膝关节增强剂强度的改变被广泛报道。然而,在机械啮齿动物研究中反复和非侵入性地分析膝盖外周肌肉(四头肌)力量的方法相对有限。一种在体内确定大鼠四头肌收缩的方法,以前曾开发过8:然而,需要大量建造非商业性设备。鉴于为研究膝盖损伤/骨关节炎9、10、11、12、13后肌肉骨骼结果而开发的啮齿动物模型的广度,有必要对四头肌的强度进行非侵入性评估。
此外,研究支撑骨骼肌适应的分子机制的啮齿动物研究通常利用小鼠模型,由于基因改造的简单性,许多药理干预研究也使用小鼠模型,因为与大鼠相比,小鼠的药物基于重量的药物剂量较低,因此其财务费用有所降低。我们报告了一种非侵入性方法,使用商用设备对同一鼠标中的活体膝部扩展功能进行反复测量,并稍作修改,促进不同实验室之间的可重复性,并提供更直接的人类力量结果比较。
所有实验程序都得到了肯塔基大学机构动物护理和使用委员会的批准。
1. 设备设置
2. 软件设置
3. 鼠标设置
4. 电极放置
5. 确定最佳电流
6. 扭矩频率实验,以确定峰值等轴破伤风扭矩
7. 终止实验
8. 数据分析
9. 双模杆系统校准
扭矩频率曲线利用较低的频率产生多个相对较低的扭矩的分离等轴抽搐,并通过越来越高的频率前进,导致抽搐的融合,从而获得峰值破伤风扭矩的等轴破伤风收缩。膝盖延长峰值破伤风扭矩的呈呈协议力频曲线启动在 10 Hz,从而引起 3 个孤立的抽搐。抽搐的部分融合发生在40赫兹,峰值破伤风扭矩达到120-180赫兹(图5)之间。
图6说明了雌性C57BL/6小鼠具有代表性的膝部延伸扭矩频率曲线。在基线上测试了三只独立的小鼠,2周后在每只小鼠身上重复实验,以进行比较,以评估可重复性。扭矩频率曲线显示与原始扭矩值 (图 6A),以及原始扭矩值正常化到鼠标体重 (图 6B).反复观察表明,所有3只小鼠在实验之间有2周的休息时间,结果相当。除了原始扭矩外,还应考虑体重正常化扭矩数据,因为重量的轻微波动可能会影响功能输出,而不单独考虑原始扭矩。此外,体重规范化扭矩数据有助于对大小不一的小鼠进行比较。扭矩也可以正常化到肌肉湿重或肌纤维横截面区域,因为我们以前已经显示16。
图7A 使用来自完整扭矩频率实验的体重规范化等轴测扭矩数据(10 Hz, 40 Hz, 120 Hz, 150 Hz, 180 Hz, 200 Hz) 为 4 单独的 C57BL/6 小鼠, 突出类似的总扭矩输出和变异系数之间 5.6% 至 8.8% 与重复实验在同一小鼠体内.数据最简单地报告为峰值破伤风扭矩(图7B),这是从120-200赫兹重复破伤风等轴收缩的最大扭矩值。6-8个月大的雌性C57BL/6小鼠(图7B)的破伤风扭矩输出峰值可与同一小鼠的纵向评估相媲美,变异系数在4.8%至8.7%。峰值破伤风扭矩与人类研究中的金标准强度评估最为可比:最大等轴测扭矩。
此外,膝关节扩展器峰值破伤风扭矩协议是检测多个小鼠模型强度差异的有用工具。图8显示了在非受伤、健康的6个月大C57BL/6雌性小鼠(黑线)和超生理肥大的转基因小鼠模型(肌他汀/GDF8)中被击倒(蓝线)中膝盖扩张强度之间的鲜明对比。我们还显示,前十字韧带(ACL-T)(红线)手术后7天,C57BL/6小鼠的破伤风曲线峰值,表明受伤后峰值扭矩下降近50%,远远超出通过反复测试未受伤小鼠观察到的变异系数。与人类数据17,18,强度明显减弱与ACL-T。所有小鼠均为雌性,年龄相近(6-8个月)。
抽搐实验 | 安培/电流 (mA) | 扭矩 (mN=m) |
1 | 50 | 1.279 |
2 | 70 | 1.341 |
3 | 90 | 1.36 |
4 | 110 | 1.362 |
5 | *130 | 1.449 |
6 | 150 | 1.436 |
7 | 140 | 1.333 |
表1:抽搐系列示例。 * 表示最佳安培/电流。
频率 (Hz) | 扭矩(mN=m) |
10 | 1.385 |
40 | 1.869 |
120 | *18.765 |
150 | 18.375 |
180 | 17.97 |
200 | 17.548 |
表2:扭矩频率曲线数据示例。 * 表示峰值破伤风扭矩。
图1:数据收集软件设置。 带实时数据监视器的数据收集软件设置说明。 请单击此处查看此图的较大版本。
图2:鼠标设置和电极放置。(A-B )通过加热平台上的鼻锥接受麻醉的鼠标的苏平位置。上后肢被牢牢地夹住,后肢紧贴膝盖,使膝盖关节不受限制地移动。运动臂进行调整,使膝盖弯曲约 60°。股骨神经运动点受针电极刺激,激活膝盖扩展器收缩。鼠标设置显示从侧视图(A) 和头顶视图(B)。请单击此处查看此图的较大版本。
图3:确定最佳电极位置,实现等轴膝伸展。 使用即时刺激功能刺激的重复负抽搐的表示,并在实时数据监视器中查看。红色箭头表示前三个膝盖延长抽搐。 请单击此处查看此图的较大版本。
图4:代表抽搐,以确定最佳安培。 引起最高抽搐等轴测扭矩的最低放大器必须通过重复抽搐实验和逐步增加的放大器来确定力频实验。 请单击此处查看此图的较大版本。
图5:同一只小鼠的扭矩频率实验中具有代表性的破伤风扭矩曲线。 (A) 10 Hz 产生的亚轴测破伤风扭矩。 (B) 亚轴测定破伤风扭矩在 40 Hz .(C) 峰值等轴破伤风扭矩输出在 120 Hz.(D) 等轴破伤风扭矩在 150 Hz .(E) 等轴破伤风扭矩在 180 Hz .(F) 等轴破伤风扭矩在 200 Hz. 请单击此处查看此图的较大版本。
图6:代表扭矩频率曲线数据。 扭矩频率曲线在2个不同的时间点(第1周和第3周)在3个单独的小鼠,呈现为原始峰值扭矩(A)和原始峰值扭矩正常化为体重(B)。请单击此处查看此图的较大版本。
图7:曲线下代表区(AUC)和峰值破伤风扭矩数据。 (A) AUC为4只独立的小鼠,呈现为生扭矩正常化为体重。(B) 同一4只小鼠的峰值破伤风扭矩,呈现为生峰破伤风扭矩正常化为体重。 请单击此处查看此图的较大版本。
图8:多个鼠标模型中膝盖外周器的峰值破伤风扭矩。 代表性峰值扭矩破伤风曲线为明显肥大转基因小鼠模型 (GDF8 KO),未受伤的健康 C57BL/6 小鼠 (鼠标 2), 和 C57BL/6 小鼠 7 天后前十字韧带转动 (ACL-T).。 请单击此处查看此图的较大版本。
补充 图1:定制塑料的尺寸。 红色嵌中显示深度维度。请点击这里下载此文件。
补充视频1:实时膝盖伸展抽搐没有运动臂。 请点击这里下载此视频。
补充视频2:慢动作膝盖伸展抽搐没有运动臂。 请点击这里下载此视频。
测量和分析啮齿动物模型中的肌肉功能,对于通过运动、损伤、疾病和治疗观察到的组织学和分子骨骼肌肉适应进行转化和有意义的推论势在必行。我们演示了一种方法,使用商用设备可靠且反复地评估小鼠的膝盖扩展或最大强度,而可调节塑料片在前头骨处保持下肢是唯一可以复制的定制制造部分。
常见的功能评估工具已被广泛用于反复评估同一鼠标内的物理性能,如跑步机运行到意志疲劳、旋转性能测试、倒立粘性测试和抓力测试。然而,这些评估虽然信息丰富,但涉及心肺和行为成分,这会混淆与这些物理性能测量相关的神经肌肉功能的询问。此外,在许多不同程度的功能评估中,耐力、协调和平衡的要素也存在,这限制了相对于肌肉力量的清晰解释。啮齿动物肌肉的力生成能力可以在体外、原位或体内测量。每种方法都有相对的优势和局限性。具体来说,通过体外评估,肌肉被完全隔离,从动物体内去除,这样不会受到灌注或内化的影响。这产生了一个控制良好的环境,以确定收缩能力,但限制肌肉的大小正在研究通过依赖被动扩散氧气和营养物质在测试期间。现场测试维持肌肉的内侧和血液供应,但仅限于单一的末期评估,如体外测试20。最后,在体内测试是侵入性最小的肌肉留在其原生环境中,皮下电极插入运动神经附近,以电刺激肌肉。体内方法的一个优势是跨时间21、22、23进行纵向测试的潜力。
在峰值肌肉收缩的体内评估中,最佳地测量了最大强度,因为小鼠的正常解剖和生理学保持不变,该方法可以在干预前后或整个寿命内在同一只小鼠上重复使用。具体来说,在小鼠膝盖扩张力的体内测量中,是与人类研究具有最大转化意义的骨髓强度评估,因为最大膝关节延伸扭矩通常被测量并被认为是人类与各种功能和健康结果相关的黄金标准强度测试 24、25、26、27.此外,随着年龄的增长,以及无数的伤病1,2,4,5,6观察到膝盖外周病理学,但评估这些情况对小鼠膝盖外力纵向的影响并非易事。
虽然此方法具有以纵向方式确定膝部扩展器峰值扭矩的实用性,但应考虑协议的某些限制。扭矩频率协议中省略了 40 Hz 至 120 Hz 之间的较低频率,这可能会限制检测带损伤或疾病的扭矩频率曲线中左右向移动的能力。然而,使用这种扭矩频率协议,我们已经能够检测到在ACL损伤模型和C56BL/6野生类型小鼠和超生理肌肉质量的转基因小鼠模型之间的破伤风扭矩峰值的改变(图8)。我们注意到,它可能是有益的,以确保电极与帮助手或类似的设备,因为肌肉收缩可能会稍微移动电极。我们没有注意到任何明显的电极位移与渐进收缩:然而,不能排除电极轻微运动的可能性,这可能会影响肌肉刺激。此外,肌肉内肌电图(EMG)没有与刺激方案同时进行:然而,如果需要并适合感兴趣的实验模式,纳入EMG措施可能是可行的。
骨科损伤和疾病的穆林模型对膝关节增大强度的评估将促进临床前研究,与临床力量测量有有意义的转化相关性。我们的协议允许精确和反复评估在小鼠的最大膝盖增强剂强度与商业可用的设备可供任何实验室。
马修·博科夫斯基受雇于奥罗拉科学公司,该公司可能从研究结果中受益,同时也是该公司的高管。
我们要感谢罗萨里奥·马罗托的技术援助。本出版物中报告的研究得到了国家卫生研究院国家关节炎和肌肉骨骼和皮肤疾病研究所的支持,该奖项编号为R01 AR072061(CSF)。内容完全由作者负责,不一定代表国家卫生研究院的官方观点。
Name | Company | Catalog Number | Comments |
1300A: 3-in-1 Whole Animal System- Mouse | Aurora Scientific Incorporated | 300D-305C-FP: dual-mode motor with custom knee extension apparatus, 605A: Dynamic Muscle Data Acquisition and Analysis System, 701C: Electrical Stimulator, 809C: in-situ Mouse Apparatus | |
6100 Dynamic Muscle Control LabBook software | Aurora Scientific Incorporated | DMC v6.000 | |
611A Dynamic Muscle Analysis | Aurora Scientific Incorporated | DMA v5.501 | |
BravMini hair clippers | Wahl Clipper Corporation | ASIN: B00IN24ILE | |
Eye Lube | Optixcare | Item Number: 142422 | |
Isoflurane | Covetrus | NDC: 11695-6777-2 | |
V-1 Tabletop Laboratory Animal Anesthesia System | VetEquip Inhalation Anesthesia Systems | Item Number: 901806 | |
Prism 8 | GraphPad Software, LLC | Version 8.3.0 (328) |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。