Method Article
加齢、病気、傷害、およびリハビリテーションに対する機能的適応を理解するためには、膝伸筋の最大強度の定量化が不可欠である。生体内膝伸張等角値ピークテタニクトルクを繰り返し測定する新しい方法を紹介する。
無数の条件と刺激に応答して骨格筋の可塑性は、負と陽性の両方の同時機能的適応を仲介する。クリニックと研究室では、最大筋力はヒトで縦方向に広く測定され、膝伸筋筋が最も報告された機能的な結果である。膝伸筋複合体の病理は老化、整形外科傷害、疾患、および使用の使用において十分に文書化されている。膝の伸張強度は、機能的能力と傷害リスクに密接に関連しており、膝の伸筋強度の信頼性の高い測定の重要性を強調しています。前臨床げっ歯類研究における膝伸筋強度の反復可能な、生体内評価は、変形性関節症または膝の損傷を探求する研究のための貴重な機能的エンドポイントを提供する。我々は、時間の間にマウスの膝伸張器の等角ピークテタニックトルクを繰り返し測定するためのin vivoおよび非侵襲的なプロトコルを報告する。我々は、同様の結果を生み出す複数のマウスで反復評価を伴う膝伸筋強度を測定するために、この新しい方法を用いて一貫性を実証する。
骨格筋は、運動、栄養、怪我、病気、老化、および使用の無駄などの無数の刺激に応答して質量と構造に代償性の変化を伴う非常に適応性の高い組織です。ヒトにおける骨格筋適応を調査する多くの研究では、金標準強度評価がヒト被験者で容易に反復可能なため、骨格筋の大きさと機能への影響の両方を測定する方法が採用されています。
具体的には、膝の伸張器および屈筋の強さは臨床研究で最も評価される。膝伸筋強度の変化は、老化、運動、整形外科傷害、変形性膝関節症、慢性疾患、および1、2、3、4、5、6、7のヒト研究において広く報告されている。しかし、機械化げっ歯類研究における膝伸筋(四頭筋)強度を繰り返し非侵襲的に分析する方法は比較的限られている。ラットの筋肉収縮性を生体内四頭筋で判定する方法を、以前に開発した8;しかし、非商用機器の大規模な建設が必要です。膝の傷害/変形性関節症に続く筋骨格の結果を研究するために開発されたげっ歯類モデルの広さを考えると9、10、11、12、13は、四頭筋強度の非侵襲的評価の必要性が存在する。
さらに、骨格筋適応を支える分子メカニズムを調査するげっ歯類研究は、ラットと比較してマウスにおける薬物の低体重ベースの薬物の服用に関連する経済的費用の減少に伴う多くの薬理学的介入研究と同様に、遺伝子組み換えの単純さのためにマウスモデルを利用することが多い。マイナーチェンジを伴う市販の機器を使用して、同じマウスでのインビボ膝伸張機能を時間をかけて繰り返し測定する非侵襲的な方法を報告し、異なる実験室間での再現性を促進し、人間の強度結果とのより直接的な比較を提供する。
すべての実験手順は、ケンタッキー大学の制度的動物の世話と使用委員会によって承認されました。
1. 機器のセットアップ
2. ソフトウェアのセットアップ
3. マウスの設定
4. 電極配置
5. 最適電流の決定
6. ピーク等角体のテタニクトルクを決定するトルク周波数実験
7. 実験終了
8. データ分析
9. デュアルモードレバーシステムキャリブレーション
トルク周波数曲線は、比較的低いトルクの複数の孤立した等角線のツイッチを生成するために低い周波数を利用し、ますます高い周波数を経て進行し、ピークテタニックトルクが得られる等角体破傷風収縮のためのぴくひびの融合をもたらす。膝延長ピークテタニックトルクのための提示されたプロトコルは、力周波数曲線が3つの孤立したツイッチを引き出す10 Hzで開始する。ツイッチの部分的な融合は40Hzで起こり、120~180Hzの間でピークテタニックトルクに達する(図5)。
図6は、雌C57BL/6マウスからの代表的な膝伸張トルク周波数曲線を示す。3つの別々のマウスをベースラインで試験し、実験を2週間後に各マウスで繰り返し、再現性を評価する比較を行った。トルク-周波数曲線は、生のトルク値(図6A)と、マウスの体重に正規化された生のトルク値(図6B)で示されています。繰り返し観察すると、実験の間に2週間の休息期間を持つ3匹のマウスすべてで同等の結果が示される。体重のわずかな変動が機能出力に影響を与える可能性があり、生トルクだけでは考慮されないので、体重正規化されたトルクデータは、生のトルクに加えて考慮する必要があります。さらに、体重正規化されたトルクデータは、様々なサイズのマウスの比較を容易にする。トルクは、以前に示したように、筋肉のぬれた重量または筋繊維の断面領域に正規化することができます。
図7A は、4つの別々のC57BL/6マウスに対する完全なトルク周波数実験(10Hz、40Hz、120 Hz、150 Hz、180 Hz、200Hz)の体重正規化等角トルクデータを使用して曲線下の領域を示し、同じマウス内で繰り返し実験を行った場合の5.6%から8.8%の間の同様の総トルク出力と変動係数を強調しています。データは、120~200 Hzの破傷風等角体収縮の最大トルク値である、ピークテタニックトルク(図7B)として最も単純に報告されます。テタニクトルク出力のピークは、6~8ヶ月齢の雌のC57BL/6マウス(図7B)に匹敵し、同じマウス内で縦方向評価を行い、4.8%から8.7%の変動係数を有する。ピークテタニックトルクは、人間の研究におけるゴールドスタンダード強度評価に最も匹敵する:最大等角体トケ。
さらに、膝伸筋ピークテタニックトルクプロトコルは、複数のマウスモデルにおける強度の違いを検出するのに有用なツールである。図8は、非負傷、健康な6ヶ月のC57BL/6メスマウス(黒線)における膝伸筋強度と、ミオスタチン/GDF8がノックアウトされる超生理学的肥大のトランスジェニックマウスモデル(青線)の間の明らかなコントラストを示しています。また、前十字靭帯(ACL-T)(赤線)の外科的横断術の7日後にC57BL/6マウスからの破傷風ピーク曲線を示し、損傷後のピークトルクの低下は、損傷していないマウスの繰り返し検査で観察された変動係数をはるかに超えています。人間データ17,18と同時に,ACL-Tで強度が著しく低下する。すべてのマウスは雌と同じような年齢(6-8ヶ月)である。
ツイッチ実験 | アンペレージ/電流(mA) | トルク (mN•m) |
1 | 50 | 1.279 |
2 | 70 | 1.341 |
3 | 90 | 1.36 |
4 | 110 | 1.362 |
5 | *130 | 1.449 |
6 | 150 | 1.436 |
7 | 140 | 1.333 |
表1:ツイッチシリーズの例 * 最適アンペレージ/電流を示します。
周波数(Hz) | トルク(mN).m) |
10 | 1.385 |
40 | 1.869 |
120 | *18.765 |
150 | 18.375 |
180 | 17.97 |
200 | 17.548 |
表2:トルク周波数曲線データの例 *は、ピークテタニックトルクを示します。
図1: データ収集ソフトウェアのセットアップ ライブデータモニタを使用したデータ収集ソフトウェアのセットアップの図。 この図の大きなバージョンを表示するには、ここをクリックしてください。
図2:マウスのセットアップと電極の配置(A-B)加熱されたプラットフォーム上の鼻コーンを介して麻酔を受けるマウスのスピーン位置。上肢はしっかりとクランプされ、膝関節での無制限の動きを可能にするために後部を膝に固定する。モータアームは、膝が約60°に曲がるように調整されます。大腿神経運動点は針電極によって刺激され、膝の伸張器の収縮を活性化する。マウスの設定は、サイドビュー(A)とオーバーヘッドビュー(B)から表示されます。この図の大きなバージョンを表示するには、ここをクリックしてください。
図3:アイソメトリック膝伸展を達成するための最適電極配置の決定 インスタント刺激機能を使用して50 mAで刺激し、ライブデータモニタで見た反復陰性のツイッチの表現。赤い矢印は、最初の3つの膝延長のツイッチを示します。 この図の大きなバージョンを表示するには、ここをクリックしてください。
図4: 最適アンペレージを決定する代表的なけいれん 最も高いtwitch等角トルクを引き出す最も低いアンペレージは、徐々に増加したアンペレージを伴う反復的なツイッチ実験によって力頻度実験のために決定されなければならない。 この図の大きなバージョンを表示するには、ここをクリックしてください。
図5:同一マウスのトルク周波数実験全体でのテタニックトルク曲線の代表(A)10 Hzで生成される下方比アイソメトリックテタニックトルク(B)40Hzでの下方比等角関数テタニックトルク(C)120Hzでのピーク等角関数テタニックトルク出力(D)150Hzでの等角テタニックトルク(E)180Hzでの等角テタニックトルク( この図の大きなバージョンを表示するには、ここをクリックしてください。
図6: 代表的なトルク周波数曲線データ (A-B)3つの別々のマウスにおける2つの異なるタイムポイント(第1週および第3週)におけるトルク周波数曲線は、生のピークトルク(A)および生のピークトルクを体重に正規化した(B)として提示する。 この図の大きなバージョンを表示するには、ここをクリックしてください。
図7:曲線下の代表領域(AUC)およびテタニックピークトルクデータ)4つの別々のマウスに対するAUCは、体重に正規化された生トルクとして提示した。(B)同じ4匹のマウスに対するテタニックのピークトルクを、体重に正規化した生ピークテタニックトルクとして提示する。この図の大きなバージョンを表示するには、ここをクリックしてください。
図8:複数マウスモデルにおける膝伸張器のテタニックトルクのピーク 代表ピークトルク破傷風曲線は、あからさまな肥大トランスジェニックマウスモデル(GDF8 KO)、損傷していない健康なC57BL/6マウス(マウス2)、および前十字靭帯四面(ACL-T)の7日後にC57BL/6マウスを有する。 この図の大きなバージョンを表示するには、ここをクリックしてください。
補助 図1: カスタム製造プラスチックの寸法 赤でインセットは深さの次元を示します。このファイルをダウンロードするには、ここをクリックしてください。
補足ビデオ1:リアルタイム膝伸張器は、モーターアームなし。 こちらをクリックして、このビデオをダウンロードしてください。
補足ビデオ2:運動アームのないスローモーション膝伸張筋。 こちらをクリックして、このビデオをダウンロードしてください。
げっ歯類モデルにおける筋機能の測定と分析は、運動、傷害、疾患および治療治療で観察される組織学的および分子骨格筋適応に関する翻訳的かつ有意義な推論を行うために不可欠である。我々は、市販の機器を使用してマウスで膝伸筋の最大強度を確実かつ繰り返し評価する方法を実証し、前脛管で下肢を保持する調節可能なプラスチック片が複製可能な唯一のカスタム捏造部分である。
一般的な機能評価ツールは、気流疲労、ロタロッド性能試験、転位クリングテスト、グリップ強度テストなど、同じマウス内の物理的性能を繰り返し評価するために広く使用されてきました。しかし、有益ながら、これらの評価は、これらの物理的なパフォーマンス対策に関連する神経筋機能の尋問を難読化することができる心肺および行動成分を含む。さらに、持久力、協調、およびバランスの要素は、様々なレベルにこれらの機能評価の多くで存在し、筋力に対する明確な解釈を制限する。げっ歯類の筋肉の力を産生する能力は、インビトロ、その場、または生体内で測定することができる。各アプローチには、相対的な利点と制限があります。具体的には、インビトロ評価により、筋肉は完全に単離され、灌流またはインナーブ19からの影響がないように動物の体から取り除かれる。これは、収縮能力を確認するために十分に制御された環境をもたらすが、テスト中に酸素と栄養素の受動的な拡散に依存して研究されている筋肉のサイズを制限します。.その場での検査では、筋肉の内挿と血液供給を維持するが、インビトロ試験20と同様に、単数形の末端評価に限定される。最後に、生体内試験は、筋肉を電気的に刺激するために運動神経の近くに挿入された経皮電極を用いて、そのネイティブ環境に残っている筋肉で最も侵襲性が低い。in vivo アプローチの強みは、時間 21、22、23の経緯度テストの可能性です。
ピーク筋収縮性のインビボ評価は、マウスの正常な解剖学および生理学がそのまま残り、介入前後または寿命を通して同じマウス上で方法を繰り返し行うことができるので、最適に最大強度を測定する。具体的には、マウスにおける膝伸張強度の生体内測定は、最大膝の延長トルクが一般的に測定され、様々な機能的および健康結果に相関を持つヒトにおける金標準強度試験24、25、26、27と考えられるように、ヒト研究に対する最大の翻訳関連性を有するマウス強度評価である.また、膝伸筋病理は、老化と同様に、無数の傷害および疾患1、2、4、5、6と共に観察されるが、これらの状態がマウスにおける膝伸筋強度に及ぼす影響を長い間評価することは容易に達成できなかった。
この方法は、膝の伸長ピークトルクを縦方向に決定するユーティリティを提供しますが、プロトコルの特定の制限を考慮する必要があります。40 Hz~120 Hzの低い周波数はトルク周波数プロトコルから除外され、損傷や病気を伴うトルク周波数曲線の左右のシフトを検出する能力が制限される可能性があります。しかし、このトルク周波数プロトコルを用いて、ACL傷害モデルにおける、及びC56BL/6野生型マウスと上流生理学的筋肉量のトランスジェニックマウスモデルとの間で、テタニックトルクのピークへの変化を検出することができた(図8)。我々は、筋肉収縮が電極をわずかに動かす可能性があるため、手や類似の装置を助けて電極を固定することが有益である可能性があることに注意してください。我々は、進行性の収縮を有する電極の明白な変位に注意しなかった。しかし、電極のわずかな動きの可能性は排除できず、筋肉刺激に影響を与える可能性があります。さらに、筋肉内筋電図(EMG)は、刺激プロトコルと組み合わせて行われませんでした。しかし、EMG測定の包含は、必要に応じて、目的の実験モデルに適して可能であり得る。
整形外科の損傷および疾患のマウスモデルにおける膝伸筋強度の評価は、臨床強度測定に有意な翻訳関連性を有する前臨床研究を促進する。当社のプロトコルは、任意の実験室にアクセス可能な市販の機器を有するマウスの最大膝伸筋強度の正確かつ繰り返し評価を可能にします。
マシュー・ボルコフスキは、調査結果の恩恵を受ける可能性のあるオーロラ・サイエンティフィック社に採用されており、同社のエグゼクティブでもあります。
ロサリオ・マロトの技術支援に感謝します。本論文で報告された研究は、国立衛生研究所の国立関節炎・筋骨格・皮膚疾患研究所が、賞番号R01 AR072061(CSF)の下で支援しました。コンテンツは著者の責任であり、必ずしも国立衛生研究所の公式見解を表すものではありません。
Name | Company | Catalog Number | Comments |
1300A: 3-in-1 Whole Animal System- Mouse | Aurora Scientific Incorporated | 300D-305C-FP: dual-mode motor with custom knee extension apparatus, 605A: Dynamic Muscle Data Acquisition and Analysis System, 701C: Electrical Stimulator, 809C: in-situ Mouse Apparatus | |
6100 Dynamic Muscle Control LabBook software | Aurora Scientific Incorporated | DMC v6.000 | |
611A Dynamic Muscle Analysis | Aurora Scientific Incorporated | DMA v5.501 | |
BravMini hair clippers | Wahl Clipper Corporation | ASIN: B00IN24ILE | |
Eye Lube | Optixcare | Item Number: 142422 | |
Isoflurane | Covetrus | NDC: 11695-6777-2 | |
V-1 Tabletop Laboratory Animal Anesthesia System | VetEquip Inhalation Anesthesia Systems | Item Number: 901806 | |
Prism 8 | GraphPad Software, LLC | Version 8.3.0 (328) |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved