JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该协议引入了一种高通量方法,用于通过脉冲幅度调制的叶绿素荧光测定法测量非光化学淬灭的松弛。该方法适用于田间生长的 甘氨酸max ,并且可以适应其他物种以筛选遗传多样性或繁殖种群。

摘要

光合作用在现代作物品种中没有得到优化,因此提供了改进的机会。加速非光化学淬火(NPQ)的松弛已被证明是提高光合性能的有效策略。然而,由于过度采样和从田间生长的作物植物收集的局限性,缺乏为改善NPQ而育种的潜力以及对NPQ松弛的遗传基础的完整理解。在之前的报告的基础上,我们提出了一种高通量测定法,用于使用脉冲幅度调制(PAM)叶绿素荧光测定法分析 甘氨酸max (大豆)中的NPQ弛豫率。在运输到实验室之前,从田间种植的大豆中取样叶盘,在实验室中用封闭的PAM荧光计测量NPQ弛豫。NPQ弛豫参数的计算方法是在从高光到低光转换后将双指数函数拟合到测量的NPQ值。使用这种方法,可以在一天内测试数百种基因型。该程序有可能筛选突变体和多样性小组在NPQ弛豫中的变化,因此可以应用于基础和应用研究问题。

引言

光合作用包括光吸收、初级电子转移、能量稳定以及光合产物的合成和传输1.了解每个步骤对于指导提高作物光合作用效率的努力至关重要。光影响光合作用的速率,需要以光子的形式平衡能量供应,并需要减少等效物。当供应超过需求时,例如在高光下或气孔闭合引起的CO2 固定减少期间,还原功率的积聚增加了活性氧形成的可能性,有可能损坏光合装置并损害电子传输。因此,为了防止损伤,植物已经发展出几种光保护机制,包括活性氧的解毒和激发叶绿素态(NPQ)的非光化学淬灭2

在野外环境中保持高光合作用率具有挑战性。季节性和昼夜变化,以及风引起的叶片运动和瞬时云层覆盖等环境波动,导致植物光合作用3所接收的光量和强度发生变化。NPQ可以消散多余的光能,并有助于防止光损伤,同时允许在高光4下持续光合作用。然而,在高光到低光跃迁期间,长时间的NPQ继续耗散可用于碳减排的能量5。因此,加速NPQ的松弛可以提高光合作用6的效率,使NPQ松弛成为作物改良的有吸引力的靶点。

脉冲幅度调制叶绿素荧光(PAM)分析可用于根据可测量参数计算NPQ(补充表1 补充表2789。本文重点介绍如何确定田间植物中的NPQ弛豫率,以筛选种质中的自然变异。然而,PAM叶绿素荧光测定法分析也可用于各种目的,适用于从藻类到高等植物的物种,并在其他地方进行了综述789

在暗适应的叶子或细胞中,光系统II(PSII)反应中心是开放的,可以接收电子并且没有NPQ。打开低强度测量光可引发叶绿素荧光,同时避免电子通过PSII传输。在这种暗适应状态下记录的最小荧光由参数Fo描述。将高强度光脉冲施加到深色适应的叶子上可以迅速减少与醌A位点结合的醌的第一个稳定电子受体池。这暂时阻断了PSII反应中心的电子转移能力,然后说这些反应中心是封闭的,无法从水分裂中接收电子。通过使用较短的脉冲持续时间,没有足够的时间来刺激NPQ。所得叶绿素荧光相当于在没有NPQ的情况下可获得的最大值,或最大荧光F m。最小荧光和最大荧光之间的差异称为可变荧光,Fv。光系统II的最大光化学量子产率(Fv/Fm)是使用以下等式从这两个参数计算得出的:

Fv/Fm = (Fm-F o)/Fm

这可以提供光系统功能和应力的重要指标。打开光化(光合)光会刺激非光化学猝灭,随后应用饱和闪光可以测量适合光的最大荧光 Fm'。通过比较暗荧光和适应光的最大荧光之间的差异,可以根据斯特恩-沃尔默方程10计算NPQ:

NPQ = F/联邦m' - 1

在高等植物中,氮磷脂被描述为由至少五种不同的成分组成,包括质量相关成分、qT、qZ、qI和qH。NPQ所涉及的确切机制尚不完全清楚。然而,在大多数工厂中,qE被认为是NPQ的主要成分。已经发现完全参与qE的关键因素包括质子梯度在类囊体膜上的积聚,光系统II亚基S1112的活性,以及脱环氧化的叶黄素,动脉炎,叶黄素,特别是玉米黄质13。qE是所有NPQ组分中松弛最快的(<2分钟)14,因此qE的可逆激活对于适应不断变化的光强度尤为重要。NPQ弛豫的第二个较慢阶段(约2-30分钟)包括与状态转换相关的qT和qZ,涉及玉米黄质与中提黄质15的相互转化。NPQ的缓慢放松(>30分钟)可能包括光抑制淬灭(qI)16 和独立于光损伤1718的过程,例如qH,其是由质体脂质体运筹蛋白1920介导的PSII外周触角中的持续淬火。

在高光下,NPQ 会增加。随后转移到低光下可导致NPQ的下调。快速、中间和慢弛鬆相位的衰减可以在双指数函数15,212223 的参数中捕获

NPQ = Aq1(-吨/τ1) + Aq2(-吨/τ2) + Aq3

双指数函数的理论基础是基于假设淬火器的一阶利用假设,包括qE(Aq1),qZ和qT的组合松弛(Aq2),相应的时间常数τq1和τq2,以及长期NPQ,其中包括qI和光损伤无关过程(Aq3)。因此,与缺乏理论基础的更简单的希尔方程相比,双指数函数提供了猝灭叶绿素荧光所涉及的多个连接生物过程的更真实的表示24

NPQ可以使用各种市售的PAM荧光计2526进行测量,从简单的手持设备27 到更先进的封闭系统28。然而,其中几种方法的局限性是通量相对较低,这使得在没有多个设备和研究团队的情况下筛选大量植物具有挑战性。为了解决这个问题,McAusland等人开发了一种基于切除的叶组织的程序,并用它来鉴定两个小麦品种29之间叶绿素荧光的差异。这种方法的吸引力在于,用一个设备从多个植物中提取的成像叶盘可以促进在一天内筛选数百个基因型。这使得评估NPQ弛豫的变化成为可能,作为全基因组关联研究的一部分,或者用于筛选有可能提高作物光合效率和最终产量的育种种群。

基于McAusland等人29的发现,我们使用叶盘的PAM叶绿素荧光分析来高通量筛选 甘氨酸maxG.max;大豆)中的NPQ弛豫率。该协议使用CF成像仪25,可与其他市售的封闭式PAM系统相媲美,例如流行的FluorCam26。通过用于调整样品的暗室,用户可以对96孔板,培养皿和小型植物进行成像。与单个植物的顺序分析相比,这种方法的主要优点是使用叶盘可提高吞吐量。在这里,我们提出了具有代表性的结果,以及一种在田间生长的植物中采样,测量和分析NPQ的方法。

研究方案

1. 种子种植

  1. 选择肥沃,排水良好但不是沙质土壤的田地,pH值接近6.5。用锄头对地面进行评分,标记出间距为0.75 m的 1.2 m 行图。
  2. 在土壤温度在25至30°C之间的生长季节开始时,沿每个地块在3厘米深处种植50粒 G.max cv. IA3023。
    注意:为了筛选遗传多样性,预计会生长和比较多种不同的基因型。每个基因型植物2-5行,以随机块设计排列。应考虑气候条件是否适合大豆的生长,包括土壤类型、温度和昼长。

2. 从田间采集叶子样本

  1. 发芽后30天在田间对植物进行取样。
    注意:30天后,大豆植物将处于营养阶段。取样前发芽后的天数取决于所解决的生物学问题。
  2. 用蒸馏水填充24孔板的孔,最长可达1/3 在盖子和板的侧面标记要取样的重复。
  3. 选择要取样的植物顶部最年轻的完全展开的叶子。将叶子放在橡胶塞上。
  4. 将#2洪堡软木螟穿过叶子并扭转以切割圆盘,同时避开中脉。从同一叶中连续收集 5 个磁盘以进行技术复制。每个地块的叶盘比所需的叶盘多取约30%,以防叶组织在运输过程中或取样时受损。
    注:生物重复(样地或植物)和技术重复(来自同一植物或样地的叶盘)的数量可能因实验设计而异。
  5. 使用棉签将叶盘从软木螟中挤出到24孔板的单孔中。检查所有叶盘是否都漂浮在水中。如果没有,用棉签轻轻地将粘在井边的叶盘移动到漂浮的位置。
  6. 继续下一个图,重复步骤 2.3 到 2.5。使用棉签将叶盘从软木螟中挤出到24孔板中的单独孔中。重复此步骤以收集第三个生物重复。
  7. 重复步骤2.6,直到对完整的24孔板进行采样。盖上盖子,用半透明的柔性薄膜密封。将盘子存放在避免阳光直射的地方,放在袋子,盒子或空的冷却器中(没有冰)。

3. 准备样品进行分析

  1. 取样后返回干净的实验室空间。轻敲密封板的盖子,以在运输过程中移开粘在盖子上的叶盘。打开薄膜并取下盖子。
  2. 将叶盘从24孔板的第一个位置转移到新鲜的96孔板中,叶盘在孔的底部朝下平。
  3. 将鼻吸器过滤器切成两半。将得到的过滤器浸入水中一半,然后轻拍纸巾以除去多余的液体。将过滤器与叶盘一起插入孔中以保持湿度。
  4. 从24孔板的第一个位置取第二个叶盘,面朝下放在96孔板的下一个可用位置。将步骤3.3中产生的鼻过滤器的剩余一半浸入水中,并在纸巾上轻拍,然后将其与第二叶盘插入孔中。
  5. 对 24 孔板的第一个位置中的第三个叶盘重复步骤 3.3 至 3.4。
  6. 移动到24孔板的第二个位置,重复步骤3.3至3.5。
  7. 当所有孔都插入叶盘和鼻吸器过滤器时,将盖子放在板上。用胶带固定右上角,以帮助在黑暗中定位板以进行成像。
  8. 用半透明的柔性薄膜密封板,并用铝箔包裹板。在铝箔上写下绘图ID和板ID。
  9. 将板放在黑暗的盒子或橱柜中至少30分钟,以允许NPQ的前两个阶段(qE,qT,qZ)的松弛。如果对NPQ的长期阶段感兴趣,则在成像前使用更长的1小时暗潜伏期。
  10. 准备一个额外的假板,以便在分析过程中聚焦。为此,将叶盘放在新鲜96孔板的每个角落,并在中心放置一个叶盘。用鼻过滤器固定叶盘,就像以前的板一样。密封板并在室温(24°C),约50%相对湿度的黑暗中孵育。

4. 使用叶绿素荧光成像仪测量非光化学淬灭

  1. 打开成像仪并打开成像软件。单击 "设置>协议" 以打开一个窗口,用于在 PAM 实验协议中输入步骤。该机器的技术规格在 补充表3中提供。
  2. 将程序设置为从饱和脉冲开始,通过在框中输入20秒来测量暗适应光合作用的最大量子效率:经过一段时间的延迟。单击" 应用脉冲" 框,然后在框中输入 1:此次数。
  3. 将脉冲 PPFD 设置为 6152,将脉冲长度设置为 800 ms,然后选中" 使用所有脉冲拍摄 F' &Fm' 图像"框。单击" 在之后插入 "以向协议添加第二个步骤。
  4. 在框中输入 30 秒:延迟后。选择选项 更改光化 ,并在框中输入 50:光化 PPFD,将腔室中的光强度设置为 50 PPFD。
  5. 单击" 在之后插入 "以向协议添加新步骤。在框中输入 150 秒:延迟 150 秒后,选择" 应用脉冲 "并在框中输入 4 个:此次数,每 150 秒应用一次测量脉冲,连续 4 次,而光化光保持在 50 PPFD。
  6. 协议的完整信息在 表1中提供,使用步骤4.2和4.3来改变光强度,使用步骤4.4和4.5进入饱和脉冲的循环。根据 表1中提供的值调整每个步骤的延迟和光强度。将协议另存为已知位置的 .pcl 文件。
  7. 关灯,将假板放在样品台上,并设置样品台高度,使叶盘在仪器底座上方140毫米处。使用假板作为聚焦时光线会反复闪烁到板上;这将需要对任何要测量的样品进行重新变暗,并可能导致光损伤。
  8. 单击 连接/断开连接至成像仪摄像机和硬件 摄像机图标以启动摄像机。单击 焦点(荧光) 符号,该符号由底部的红色双面箭头图标表示,底部有两条绿线。调整镜头和曝光度,使印版聚焦。
  9. 再次单击 焦点(荧光) 图标以关闭闪烁的指示灯。在黑暗中工作,用要分析的板替换假板。
  10. 单击 地图图像 照相机图标。通过打开或关闭光圈来调整图像曝光,直到弹出窗口中的条形位于绿色区域中。
  11. 每次调整光圈后,单击" 重试 "按钮,直到正确调整曝光并拍摄图像。右键单击图像,然后选择" 应用图像隔离" 以屏蔽背景信号。聚焦的叶区域将以灰色显示,背景以蓝色显示。
  12. 通过右键单击图像,从修改图像下拉菜单中调整直方图和伽马水平,选择感兴趣的区域/像素以仅包括叶盘。
  13. 右键单击图像,然后选择" 删除高低切口(颜色映射表)" 以删除浅蓝色的高亮区域。右键单击图像,然后选择" 删除杂散(重型)" 以删除未接触至少三个其他像素的任何像素。
    注意:图像上显示为孤立岛屿的任何区域都将单独分析并包含在最终数据输出中。图像隔离和杂散像素的去除可生成干净、可理解的数据。
  14. 单击 "运行协议 "图标以启动程序,屏幕底部将出现一个计时器,通知您协议还剩下多长时间才能运行。
  15. 等到协议完成,单击" 文件">"另存为",然后将数据另存为 .igr 文件。在开始运行另一个样品板之前,通过单击窗口右上角的红叉来关闭窗口。
  16. 通过选择" 文件>新建" 打开下一个样品的新文件,然后重复步骤 4.10 至 4.15,直到测量完所有板。
    注意:建议在4小时或更短的时间内测量板,以尽量减少昼夜节律调节对结果的潜在影响

5. 处理叶绿素荧光数据

  1. 在映像软件中打开 .igr 文件。通过单击 "文件">"导出到文件夹"来 导出数据,以创建包含所有必要文件的新文件夹。
  2. 将以下三个 MATLAB 文件复制到生成的文件夹中:"映射和标签磁盘"(补充文件 1)、"处理FoFm.m"("补充文件 2")和"处理NPQdata.m"(补充文件 3),以及 R 文件:create_file_to_process。R(补充文件4)。
  3. 在 MATLAB 中打开"地图和标签磁盘"m(补充文件 1)并运行。将弹出窗口中生成的编号叶磁盘的映射保存为.png文件,以便稍后检查叶磁盘编号。
  4. 在 MATLAB 中打开文件"进程FoFm.m"(补充文件 2),然后运行以计算每个叶磁盘的 F oFm 值。运行进程NPQ数据.m(补充文件 3)以计算每个时间点的 NPQ 值。
  5. create_file_to_process打开文件。Rstudio 中的 R(补充文件 4),并将日期添加到第 5 行的代码中。将车牌号添加到 create_file_to_process.R 中的第 8 行。
  6. 运行create_file_to_process。R 将 Fv/Fm 值和 NPQ 数据合并到一个文件中,该文件以后缀为 -cf-summar 的数据命名.csv。使用步骤 5.3 中的.png文件检查步骤 5.5 中的 cf-summary 文件中的叶磁盘编号。与地块编号和加入有关的附加信息。
  7. 打开 R 脚本 CF-data-processing_2.R(补充文件 5),并将第 13 行更改为工作目录路径。将 CF 数据processing_2.R 中的第 16 行更改为步骤 5.5 中的文件名。
  8. 将 CF 数据processing_2.R 中的第 48 行更改为输出文件的名称。运行 CF-data-processing_2.R 脚本以重新设置数据格式以进行曲线拟合。
  9. 在 MATLAB 中打开脚本MatLab_NPQ_5_fit_model_v5.m(补充文件 6),并将第 5 行更改为步骤 5.8 中的输出文件的名称。将 MatLab_NPQ_5_fit_model_v5.m 中的第 85 行更改为新的输出文件名。MatLab_NPQ_5_fit_model_v5运行脚本以计算 NPQ 松弛参数。

结果

图1A 描述了大田种植的大豆中NPQ的典型测量值。2021年夏季在伊利诺伊州厄巴纳(纬度40.084604°,经度-88.227952°)种植植物,并于6月5日播种。2021. 在播种30天后对叶盘进行采样,并使用提供的方案进行测量(表1)。计算每个叶盘的 Fv/Fm 和NPQ值(补充表4),并通过拟合双指数函数计算NPQ松弛参数(表2)。在初始饱和闪光以?...

讨论

仔细选择和处理叶盘对于获得可靠的NPQ测量值至关重要。首先,对组织的损伤,例如用镊子粗暴处理,将引入应力,导致光合作用的最大量子效率值较低。非胁迫植物的 Fv/Fm 值通常约为0.8318,显著下降表明光合性能下降9。然而,在田间条件下生长的植物通常经历轻微的胁迫,因此根据先前的研究,将 FvFm...

披露声明

作者报告没有利益冲突

致谢

这项工作得到了研究项目"实现提高光合作用效率"(RIPE)的支持,该项目由比尔和梅琳达·盖茨基金会,粮食及农业研究基金会以及英国外交,英联邦和发展办公室资助,拨款号为OPP1172157。

材料

NameCompanyCatalog NumberComments
24 well tissue culture plateFisher ScientificFB012929Country of Origin: United States of America
96 well tissue culture plateFisher ScientificFB012931Country of Origin: United States of America
Aluminum foilAntylia Scientific 61018-56Country of Origin: United States of America
Black marker penSharpieSAN30001Country of Origin: United States of America
CF imagerTechnologica Ltd.N/Achlorophyll fluorescence imager
Country of Origin: United Kingdom
Cork-borer, 7mmHumboldt Mfg CoH9665Country of Origin: United States of America
FluorImager V2.305 SoftwareTechnologica Ltd.N/Aimaging software
Country of Origin: United Kingdom
iHank-Nose 100-Pack of Premium Nasal Aspirator Hygiene FiltersAmazon B07P6XCTGVCountry of Origin: United States of America
Marker stakesJohn Henry CompanyKN0151Country of Origin: United States of America
Paper scissorsVWR82027-596Country of Origin: United States of America
ParafilmBemis Company Inc. S3-594-6Semi -transparent flexible film
Country of Origin: United States of America
Solid rubber stoppersFisher Scientific14-130MCountry of Origin: United States of America

参考文献

  1. Blankenship, R. E. . Molecular Mechanisms of Photosynthesis. , (2021).
  2. Murchie, E. H., Niyogi, K. K. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology. 155 (1), 86-92 (2011).
  3. Horton, P. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 367 (1608), 3455-3465 (2012).
  4. Slattery, R. A., Ort, D. R. Photosynthesis: photosynthetic efficiency improvement. Encyclopedia of Biological Chemistry III (Third Edition). , 256-267 (2021).
  5. Zhu, X. -. G., Ort, D. R., Whitmarsh, J., Long, S. P. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. Journal of Experimental Botany. 55 (400), 1167-1175 (2004).
  6. Kromdijk, J., et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science. 354 (6314), 857-861 (2016).
  7. Maxwell, K., Johnson, G. N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany. 51 (345), 659-668 (2000).
  8. Murchie, E. H., Lawson, T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany. 64 (13), 3983-3998 (2013).
  9. Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology. 59 (1), 89-113 (2008).
  10. Bilger, W., Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research. 25 (3), 173-185 (1990).
  11. Li, X. -. P., et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 403 (6768), 391-395 (2000).
  12. Niyogi, K. K. PHOTOPROTECTION REVISITED: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology. 50 (1), 333-359 (1999).
  13. Ruban, A. V. Nonphotochemical Chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant physiology. 170 (4), 1903-1916 (2016).
  14. Krause, G. H., Vernotte, C., Briantais, J. -. M. Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 679 (1), 116-124 (1982).
  15. Nilkens, M., et al. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1797 (4), 466-475 (2010).
  16. Krause, G. H. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiologia Plantarum. 74 (3), 566-574 (1988).
  17. Brooks, M. D., Sylak-Glassman, E. J., Fleming, G. R., Niyogi, K. K. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proceedings of the National Academy of Sciences. 110 (29), 2733-2740 (2013).
  18. Demmig, B., Björkman, O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta. 171 (2), 171-184 (1987).
  19. Malnoë, A., et al. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. The Plant Cell. 30 (1), 196-208 (2018).
  20. Amstutz, C. L., et al. An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nature Plants. 6 (2), 154-166 (2020).
  21. Dall'Osto, L., Cazzaniga, S., Wada, M., Bassi, R. On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Philosophical Transactions of the Royal Society B: Biological Sciences. 369 (1640), 20130221 (2014).
  22. Chekanov, K., et al. Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress. Biochimica et Biophysica Acta (BBA) - General Subjects. 1863 (10), 1429-1442 (2019).
  23. Allorent, G., et al. A dual strategy to cope with high light in Chlamydomonas reinhardtii. The Plant Cell. 25 (2), 545-557 (2013).
  24. Holzwarth, A. R., Lenk, D., Jahns, P. On the analysis of non-photochemical chlorophyll fluorescence quenching curves: I. Theoretical considerations. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1827 (6), 786-792 (2013).
  25. Barbagallo, R. P., Oxborough, K., Pallett, K. E., Baker, N. R. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant physiology. 132 (2), 485-493 (2003).
  26. Nedbal, L., Soukupová, J., Kaftan, D., Whitmarsh, J., Trtílek, M. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research. 66 (1), 3-12 (2000).
  27. Kuhlgert, S., et al. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science. 3 (10), 160592 (2016).
  28. Cruz, J. A., et al. Dynamic environmental photosynthetic imaging reveals emergent phenotypes. Cell Systems. 2 (6), 365-377 (2016).
  29. McAusland, L., Atkinson, J. A., Lawson, T., Murchie, E. H. High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. Plant Methods. 15 (1), 109 (2019).
  30. Woo, N. S., Badger, M. R., Pogson, B. J. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods. 4 (1), 27 (2008).
  31. Bielczynski, L. W., Łącki, M. K., Hoefnagels, I., Gambin, A., Croce, R. Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiology. 175 (4), 1634-1648 (2017).
  32. Niyogi, K. K., Truong, T. B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Physiology and metabolism. 16 (3), 307-314 (2013).
  33. Delosme, R., Olive, J., Wollman, F. -. A. Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1273 (2), 150-158 (1996).
  34. Quick, W. P., Stitt, M. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 977 (3), 287-296 (1989).
  35. Horton, P., Hague, A. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 932, 107-115 (1988).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

185

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。