登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该协议描述了使用iDISCO +对完整小鼠大脑进行磁共振成像,清除和免疫标记的方法,然后详细说明了使用光片显微镜成像和使用NuMorph的下游分析。

摘要

组织清除后进行光片显微镜(LSFM)能够对完整的大脑结构进行细胞分辨率成像,从而可以定量分析由遗传或环境扰动引起的结构变化。全脑成像可以更准确地定量细胞,并研究物理切片组织的常用显微镜可能遗漏的区域特异性差异。与共聚焦显微镜相比,使用光片显微镜对清除的大脑进行成像大大提高了采集速度。尽管这些图像产生非常大量的大脑结构数据,但大多数在清除组织图像中进行特征量化的计算工具仅限于计数稀疏的细胞群,而不是所有细胞核。

在这里,我们展示了NuMorph(基于核的形态测量),一组分析工具,用于量化出生后第4天(P4)小鼠大脑注释区域内的所有细胞核和核标记物,在光片显微镜上清除和成像。我们描述了磁共振成像(MRI),以在组织清除脱水步骤引起的收缩之前测量脑体积,使用iDISCO+方法清除组织,包括免疫标记,然后使用市售平台进行光片显微镜,以细胞分辨率对小鼠大脑进行成像。然后,我们使用NuMorph演示了这个图像分析管道,该管道用于校正强度差异,拼接图像图块,对齐多个通道,计数细胞核,并通过注册到公开可用的图谱来注释大脑区域。

我们使用公开可用的协议和软件设计了这种方法,允许任何具有必要显微镜和计算资源的研究人员执行这些技术。这些组织清除、成像和计算工具允许测量和量化皮层中细胞类型的三维 (3D) 组织,应广泛适用于任何野生型/敲除小鼠研究设计。

引言

单细胞分辨率的全脑成像是神经科学中的一个重要挑战。细胞分辨率脑图像允许对脑回路进行详细分析和系统级映射,以及该回路如何被神经精神疾病的遗传或环境风险因素、发育中的胚胎中的细胞行为以及成人大脑中的神经回路破坏1,23有多种组织学方法可以对重建的3D大脑进行高分辨率图像;然而,这些技术需要昂贵的专用设备,可能与免疫标记不兼容,并且某些方法的二维(2D)性质可能导致切片过程中的组织损伤和剪切45

最近的进展提供了一种不需要组织切片的整个大脑成像的替代方法;它们涉及使用组织清除使大脑透明。在大多数组织清除方法中,通过去除脂质(因为它们是光散射的主要来源)以及在成像过程中将物体的折射率(RI)与样品浸没溶液的折射率(RI)相匹配来实现透明度。然后光可以穿过材料之间的边界而不会被散射6789

组织清除方法,如iDISCO+,通常与使用单光子激发显微镜的快速3D成像相结合,如LSFM6710。在用荧光团标记的透明组织内,光片荧光显微镜通过用薄平面的光11激发对切片进行成像。LSFM的主要优点是一次照亮单个光学切片,该切片内分子的所有荧光都被激发,从而最大限度地减少了光漂白。此外,对整个光学切片进行成像可以基于相机检测激发切片,从而相对于点扫描12提高速度。LSFM无损地生产适合3D重建的配准良好的光学切片。

虽然iDISCO+方法允许在~3周内进行廉价的组织清除,但方案中的脱水步骤可能导致组织收缩和样品形态的潜在改变,从而影响体积测量610。在组织清除程序之前添加二次成像方法,例如MRI,可以测量整个样品的组织清除引起的收缩程度。在脱水步骤中,灰质和白质之间的机械性能差异可能导致脑物质变形不均匀,导致野生型和突变型样品之间不同的组织清除诱导的体积变形,并可能混淆对这些样品中体积差异的解释1013.MRI是通过首先用造影剂(例如钆)灌注动物来进行的,然后在成像14之前将提取的目标组织在浸没溶液(例如fomblin)中孵育。MRI与组织清除和对同一样品进行LSFM兼容。

LSFM通常用于创建大规模显微镜图像,用于目标脑组织的定性可视化,而不是对脑结构进行定量评估(图1)。如果没有定量评估,就很难证明遗传或环境损害造成的结构差异。随着组织清除和成像技术的改进,以及存储和计算能力成本的降低,量化感兴趣组织内的细胞类型定位变得越来越容易,使更多的研究人员能够将这些数据纳入他们的研究中。

随着小鼠大脑中超过 1 亿个细胞15 和可以生成 TB 数据的全脑成像会话,对高级图像分析工具的需求不断增加,这些工具可以准确量化图像中的特征,例如细胞。对于组织清除图像存在许多分割方法,这些方法对核染色强度应用阈值并过滤具有预定义形状,大小或密度10,16,1718的物体。然而,对结果的不准确解释可能是由于细胞大小、图像对比度和标记强度等参数的变化引起的。本文描述了我们建立的量化小鼠大脑细胞核的方案。首先,我们详细介绍了P4小鼠大脑组织收集的步骤,然后是根据公开可用的iDISCO+方法10优化的组织清除和免疫标记方案。其次,我们描述了使用MRI和光片显微镜进行的图像采集,包括用于捕获图像的参数。最后,我们描述并演示了NuMorph19,这是我们小组开发的一组图像分析工具,可以在组织清除后进行细胞类型特异性定量,使用核标记进行免疫标记以及注释区域的光片成像。

研究方案

所有小鼠均按照北卡罗来纳大学教堂山分校的机构动物护理和使用委员会(IACUC)使用并得到其批准。

1.小鼠解剖和灌注

注意:使用注射器对P4和P14小鼠进行以下解剖。灌注液的体积将根据动物的年龄而变化。

  1. 灌注
    注意:多聚甲醛(PFA)是一种危险化学品。在化学通风橱中执行所有灌注步骤。
    1. 手术前,通过腹腔注射(100mg / kg) 给予 戊巴比妥,并使麻醉剂生效。
    2. 一旦动物达到手术麻醉平面,使用捏脚趾反应方法来确认无反应。
    3. 在肋骨下方做一个侧切口,露出动物的胸腔。
    4. 使用弯曲的手术剪刀,小心地从肋骨切开,直到动物一侧的锁骨,并在另一侧做一个相同的切口,让胸骨被抬起,露出心脏。
    5. 在不损伤降主动脉的情况下,小心修剪任何连接到心脏的组织,然后在右心房做一个小切口,让血液流出脉管系统。
    6. 使用基于注射器的方法,分别用 10 mL 和 7 mL 磷酸盐缓冲盐水 (PBS) 通过左心室灌注小鼠,用于 P14 和 P4,灌注速率为 1.5 mL/min。
    7. 清除血液后,分别在4°C下再次用10mL的PBS + 4%PFA和7mL的PBS + 4%PFA对P14和P4进行灌注,灌注速率为1.5mL / min以固定动物。
      注意:将观察到固定震颤,动物在完成后会僵硬。如果对样品使用 MRI,则在每个时间点灌注相似体积的 PBS 和 PFA + PFA 溶液中 20% 钆基 MRI 造影剂。
    8. 使用手术剪刀取出头部,并在4°C下用PBS + 4%PFA放置固定24小时以完全固定。
      注意:在这个阶段,大脑保持完整,头骨在上(见第2节)。 暂停点: 大脑在这个阶段可以在4°C的PBS + 0.1%叠氮化钠中储存几个月。

2. 基于MR的完整颅骨脑结构成像和分析

注意:如上所述,大脑必须灌注并在钆中孵育,而不是从颅骨中取出。所有MRI均在从颅骨中取出大脑之前进行,以避免解剖过程中意外的组织损失。在样品制备和成像过程中,完整颅骨成像还为样品架(即注射器)中的大脑提供支持。

  1. 样品制备
    注意:以下步骤针对 P4 和 P14 小鼠大脑样本进行了优化。所需的注射器尺寸将取决于样品的物理尺寸。
    1. 如果对样品进行MRI,则从颅骨中取出皮肤,并在4°C下在PBS + 3%钆中孵育23天,然后再成像14。23天后,在PBS中快速冲洗样品。
    2. 使用5 mL注射器创建用于MRI的样品架,使用注射器活塞关闭用注射器20制成的支架的每一端。使用塑料片将头骨紧紧固定在支架中(图2A)。用乙醇去除注射器上的标记,以防止成像时出现伪影。
    3. 将头骨牢固地放入样品架中,并填充与MRI兼容的浸没溶液(参见 材料表)。关闭支架并使用注射器去除所有气泡。
      注意: 暂停点: 在成像前,颅骨可以在浸没溶液中储存几个月。
  2. 脑大体结构成像 (MRI)
    1. 使用9.4T / 30 cm水平孔动物MRI系统使用15 mm体积线圈和基于自旋回波的序列对样品进行成像,参数如下:空间分辨率:60 μm x 60 μm x 60 μm;总扫描时间:7小时12分钟;回波时间 (TE): 6.83 毫秒;重复时间: 40 毫秒;激发/重新聚焦翻转角度:90/180度;图像尺寸:166 x 168 x 209体素;视场: 9.9 毫米 x 10.1 毫米 x 12.4 毫米;带宽:100,000 kHz。
  3. 计算大脑结构分析
    1. 通过使用分割软件手动追踪小鼠大脑,从原始MRI图像中删除周围的头骨。接下来,在掩模图像和原始 MRI 图像之间应用体素乘法运算,以生成颅骨剥离的脑 MRI 图像。
      注意:输出是一个二进制掩码图像,其中脑体素的强度设置为 1 和 0,否则。
    2. 使用FSL包2122 中的"调情"应用刚性图像配准(仅估计平移和旋转),以将颅骨剥离的MRI图像(运动图像)与相应的光片显微镜图像(参考图像)对齐。
    3. 应用非刚性配准(在ANTS软件23中使用"SyN")以查找步骤2.3.2中的刚性对齐MRI图像与光片图像(步骤2.3.2中的相同参考图像)之间的点对点对应关系。
      注意:输出包括翘曲的MRI图像以及与从MRI到光片图像的体积变化相关的变形场。
    4. 计算步骤 2.3.3 中生成的变形场上的雅可比行列式,该行列式量化了 3 x 3 x 3 体素局部邻域中的体积变化。
    5. 使用可变形图像配准将颅骨剥离图像与艾伦发育小鼠大脑图谱对齐。
      注意:建立的空间点对点对应允许在新鼠标图像中自动注释感兴趣的大脑区域(图 2C-H)。

3. 颅骨脑解剖

  1. 沿着颅骨顶部从颈部到鼻子做一个中线切口,露出头骨。
  2. 通过修剪掉剩余的颈部肌肉和所有其他残留肌肉来暴露颅底。
  3. 使用锋利的手术剪刀,沿着颅骨内表面小心地切割,注意不要在用锋利的手术设备切割时保持温和的向上压力来损伤大脑。
  4. 用镊子将头骨的两半从大脑中剥离出来,并小心地修剪掉附着在大脑上的多余脂肪。
  5. 使用手术剪刀修剪任何连接大脑和头骨的硬脑膜,然后用刮刀轻轻地将大脑从头部移除。
  6. 取出大脑,用PBS洗涤,然后用0.1%叠氮化钠换成PBS,并保持在4°C长期储存。

4. 组织清除

注意:此协议改编自P4小鼠6的iDISCO+协议,略有变化。某些细节可能会因不同的时间点/物种/实验而变化)。注意:甲醇、二氯甲烷 (DCM) 和二苄基醚 (DBE) 是危险化学品。这些组织清除步骤在化学通风橱中进行。

  1. 抗体验证
    注意:需要检查未经测试的抗体的甲醇相容性,因为它们可能会受到iDISCO+方案中要求的苛刻甲醇洗涤的负面影响。有关已在iDISCO+中起作用的抗体列表,请参阅网站24
    1. 将PFA固定感兴趣的组织的10μm冷冻切片收获到立体载玻片上。
    2. 将切片在100%甲醇中在室温下孵育3小时。
    3. 在进行标准免疫组织化学方案之前,在PBS中再水合,以确定甲醇洗涤后抗体是否显示出预期的荧光模式。对于阳性对照,使用未用甲醇处理的载玻片。
  2. 缓冲液制备
    1. 根据官方iDISCO协议准备缓冲液。有关该协议中使用的缓冲液和其他溶液的组成,请参见 材料表
  3. 预处理
    1. 用甲醇/PBS系列脱水样品:20%,40%,60%,80%,100%;室温下各1小时。
      注意:在脱水期间使用PBS有助于防止样品在甲醇洗涤中破裂。
    2. 将样品在100%甲醇中洗涤1小时,然后在4°C下冷却1小时,然后在室温下在66%DCM / 33%甲醇中振荡孵育过夜。
    3. 在室温下用100%甲醇洗涤样品2x,然后在4°C下冷却。
    4. 使用新鲜的5%H2O2 在甲醇中将样品在4°C下漂白过夜。
    5. 用甲醇/ PBS系列对样品进行再水化:80%,60%,40%,20%,PBS;在室温下各1小时,并在室温下在PTx.2中洗涤2x1小时。
    6. 将样品在 1x PBS/0.2% TritonX-100/20% DMSO 中在 37 °C 下孵育过夜。
    7. 将样品在1x PBS / 0.1%吐温-20 / 0.1%TritonX-100 / 0.1%脱氧胆酸盐/ 0.1%NP40 / 20%DMSO中在37°C孵育过夜。
    8. 在室温下在PTx.2中洗涤1小时两次。
  4. 免疫标记
    1. 将样品在37°C的透化溶液中孵育2天(~48小时)。
    2. 将样品在37°C封闭溶液中封闭2天(~48小时)。
    3. 将样品与一抗在PTwH / 5%DMSO / 3%血清中在37°C孵育4天(~96小时)(例如,兔(Rb)Brn2 / POU3F2 mAb(1:100)和抗Ctip2大鼠(Rt)抗体(1:400)(材料表)。
    4. 在PTwH中洗涤3 x 1小时。 在PTwH中再洗涤2小时。 在室温下在洗涤溶液中放置过夜。
    5. 将样品与二抗和核染料(如TO-PRO-3)在PTwH / 3%血清中在37°C孵育4天(~96小时;例如山羊抗Rb(1:50)和(山羊抗Rt(1:200))(材料表)。
    6. 在PTwH中洗涤3 x 1小时 在PTwH中再洗涤2小时。 在室温下在洗涤溶液中放置过夜。
  5. 空地
    1. 在甲醇/ PBS系列中脱水-室温下各20%,40%,60%,80%,100%-1小时。在室温下在66%DCM / 33%甲醇中振荡孵育3小时。
      注意:样品可以在100%甲醇脱水后立即在室温下放置过夜。
    2. 在室温下(振荡)在100%DCM中孵育15分钟两次以洗涤MeOH。
    3. 在二苄基醚(DBE)中孵育,在室温下不摇动。确保试管几乎完全充满DBE,以防止样品氧化。在成像前倒置几次完成溶液混合。

5. 光片成像

注意:iDISCO组织清除的大脑使用光片显微镜成像,配备2X / 0.5 NA物镜,互补金属氧化物半导体相机以及显微镜操作和图像采集软件,P4时间点为0.75 x 0.75 x 4μm /体素,因为这允许皮层内的单细胞分辨率(图3A,B)。

  1. 样品安装
    1. 由于光片显微镜的额定工作距离(5.7 mm减去0.5 mm安全裕度),小心地将样品安装在正确的样品尺寸支架中,使样品的z尺寸深度不超过5.2 mm25
    2. 将支架放在样品架中,支架的螺钉与支架支架成45°角(图1B)。放置底座,使光路垂直于样品(图1C)。
  2. 成像参数
    1. 将显微镜上的变焦主体设置为4倍放大 率或更高,产生0.75μm/像素。
      注意:P4光片图像的单细胞计算分析可以使用任何市售光片显微镜完成,其分辨率为0.75 x 0.75 x 4μm /体素或更高。较低的分辨率对于细胞核分布更稀疏的后期时间点的大脑来说已经足够了。
    2. 在图像采集软件中,选择NA = ~0.08(9 μm厚度/ 4 μm z步长)的单个光片
      注意:此设置与水平动态聚焦相结合,允许在合理的时间内以小鼠大脑的单细胞分辨率进行全脑成像。对于出生后第 4 天 (P4) 大脑,根据大脑的大小,三个通道的图像采集时间估计为 11-15 小时。
    3. 为确保沿图像宽度保持轴向分辨率,请选择 水平动态聚焦 并根据激光波长应用建议的步数。对于整个P4小鼠大脑,将水平动态聚焦设置为11。根据配准通道调整每个通道的 精细对焦
      注意:在这里, TO-PRO-3通道(647 nm) 被注册到艾伦发育小鼠脑图谱中,因为它标记了所有细胞核。
    4. 根据通道属性调整每个通道的 激光功率
      注意:与较短的波长相比,较长的波长需要更高的激光功率。例如,780 nm 需要在高激光功率 (70% - 75%) 和低曝光 (50 ms) 下成像,而 647 nm 通道需要平均激光功率 (40% - 45%)低曝光 (50 ms)。
    5. 光片宽度 调整为 ~50%, 以确保对于此样本大小,片材功效在 y 维度上最佳分布。
      注意:结合水平动态聚焦,50%的纸张宽度在整个图像上提供平均功率分布,并降低光漂白的风险25
    6. 根据样本大小设置"图块数",建议在图块之间重叠 15%,并在给定图块位置为每个堆栈按顺序捕获每个通道的图像。

6. 使用NuMorph进行图像处理

注意:NuMorph 管道有三个用于 3D 图像分析的主要部分:预处理、分析和评估。这些部分分别分为 NMp_template.m、NMa_template.m 和 NMe_template.m,下面将对此进行讨论。此外,还添加了NM_setup.m,以下载和安装NuMorph顺利运行所需的软件包。NM_samples.m还提供了输入图像采集信息的模板。

  1. NuMorph 设置
    1. 下载并安装 Linux26conda 环境管理器。下载并安装 NuMorph19 图像处理工具。
    2. 在命令行上,运行 Matlab。从NuMorph运行NM_setup.m ,下载并安装分析所需的图像分析软件包。
      注意:此步骤可确保正确设置 conda 环境,并确保正确下载和安装 Matlab 运行三个管道中的每一个所需的所有工具和附加组件。这里最值得注意的是用于运行配准的 Elastix 和用于细胞检测和计数的 3D-Unet。
  2. 通过编辑文件NM_samples.m,指定样本名称、输入和输出目录、通道信息和光片成像参数。
    注意:在这里,建议仔细检查以确保正确指定了正确的信息,尤其是图像输入目录。在运行后续步骤之前,通常不会在此处调用错误。
  3. 图像预处理
    1. 强度调整
      1. 在NMp_template中,设置 强度调整 = true
        注意:如果需要调整强度,则设置为 true。如果没有,则设置 强度调整 = false。还有一个选项可以使用"更新"来覆盖以前的调整参数。
      2. 设置 使用处理的图像 = 使用一组 新图像时 false。否则,在输出目录中指示任何先前保存的图像数据集(例如,"对齐"、"拼接"),以用于后续处理步骤。
        注意:在输入图像已预处理的情况下,将提供此选项。在这种情况下,预处理的图像将用作输入图像,并且该选项将设置为输出目录中子目录的名称。
      3. 设置 保存图像 = true
        注意:使用此选项可确保处理后的图像保存在输出目录中;否则,将仅计算并保存参数。
      4. 设置 保存样本 = true
        注意:此选项可确保为每个主要步骤保存示例结果。
      5. 设置调整瓷砖阴影=基本以使用BaSiC算法27应用阴影校正,或使用来自光片显微镜在特定光片宽度下的测量值手动应用瓷砖阴影校正。
        注意: 此选项可校正由板材腰部形状引起的沿 y 尺寸的不均匀照明。
    2. 图像通道对齐
      1. 在NMp_template中,设置 通道对齐 = true。如果需要通道对齐,请将此选项设置为 true。如果不是,则设置为 false。将通道对齐方法设置为平移(刚性)或弹性(非刚性)。
        注意:平移方法利用刚性 2D 配准方法来对齐多个通道,而弹性方法利用非刚性 B 样条曲线 28 来校正在长图像采集19 期间可能发生的旋转漂移。
    3. 迭代图像拼接
      1. 在NMp_template中,设置 拼接图像 = true
        注意: 如果需要拼接,请将此选项设置为 true。
      2. 设置 筛选细化 = true
        注意: 此选项用于使用缩放不变特征变换29 进一步细化 xy 中的转换。
      3. 设置 荷载对齐参数 = true
        注意: 此选项在拼接期间使用通道对齐转换。对于多通道成像,建议使用此选项。否则,设置为 false。
      4. 设置 重叠 = 0.15 以匹配成像期间的切片重叠。
    4. 要运行这些预处理步骤中的任何一个,请在环境外部的 Matlab 中运行以下命令NMp_template:
      1. 指定示例名称。设置配置 = NM_config(进程,样本)。
      2. 通过指定NM_process(config,stage)来运行任何预处理步骤,并使用任何过程的强度、对齐或拼接来指定阶段。检查输出目录中每个阶段的输出文件(图 3图 4)。
  4. 图像分析
    1. 在NuMorph之前
      1. 从 3D 图集图像和关联的注释图像开始,该图像将每个体素分配给特定结构。
        注意:这里使用由麦哲伦映射器30 生成的P4艾伦发育小鼠大脑图谱。
      2. 对齐图集图像和注释文件,以确保它们在正确的方向上正确匹配。
    2. 在NuMorph中
      注意:现在图集及其注释已正确对齐,必须在NuMorph中"修改"或处理文件,以便可以保存以供以后使用。为此,请使用 munge_atlas 函数指定输入,如下所示。
      1. 指定 Atlas_file:(字符串)。提供图集文件的完整路径。
      2. 指定 Annotation_file:(字符串)。提供关联批注的完整路径。
      3. 指定 分辨率:(1x3 数字)。将图集 y,x,z 分辨率指定为每像素微米。
      4. 指定 方向:(1 x 3 个字符)。提供图谱方向,并确保其与样品在摇篮中的设置相匹配(前(a)/后(p),上(s)/下(i),左(l)/右(r))。
      5. 指定半球:指定成像的大脑 半球("左"、"右"、"两者"、"无")。
      6. 指定 out_resolution:(int)。指定图集输出的各向同性分辨率(以微米为单位)。(默认值:25)。
      7. 运行命令"munge_atlas(atlas_file,annotation_file,分辨率,方向,半球)",在/data/annotation_data中生成被破坏的注释,并在/data/atlas中生成图集图像的副本。
      8. 阅读 Matlab 结构和图集文件,验证这两个文件是否以正确的方向正确修改。
        注意:可以执行额外的细胞分类步骤,以根据免疫标记蛋白标记物的共定位来量化细胞类型。
    3. 重采样
      1. 在NMa_template中,如果执行图像配准以引用图集或生成高分辨率数据集的缩减采样体积,则设置 重采样图像 = true
        注意:NMa_template.m 将用于设置重采样、配准、细胞核检测和细胞计数的参数。
      2. 设置重采样分辨率以匹配图集。
        注意:这里使用25μm3/体素各向同性分辨率,因为参考图集处于此分辨率。
      3. 使用重采样通道 = [ ] 指定要重新采样的通道号。
        注意:此处的通道号设置为与核通道匹配。如果此选项为空,则仅对配准通道进行重新采样。
    4. 注册
      1. 在NMa_template中,设置 寄存器映像 = true。如果需要注册,则设置为 true。如果不是,则设置注册 = false。
      2. 指定图集文件以匹配图集目录中的文件。
      3. 设置 注册参数 = 默认值
        注意:此选项利用仿射后跟 B 样条变换来估计空间对应关系。否则,通过 Elastix /data/elastix_parameter_files/atlas_registration 中定义一组新的注册参数。
      4. 设置 保存已注册的图像 = true
        注意:配准和重采样的输出文件可以在 Matlab 或其他可视化工具(如 FIJI31)中下载和目视检查。
    5. 细胞核检测、细胞计数和分类
      注意:此处发生的错误可能是由于未正确指定注释文件或示例的年龄与正确的注释不匹配。
      1. 在NMa_template中,设置 计数细胞核分类细胞 = true
      2. 设置 计数方法 = 3dunet
        注意:此选项允许使用经过训练的 3D-Unet 模型19。否则,请选择利用黑森州斑点检测方法的黑森州。
      3. 设置 min_intensity 以定义检测到的对象的最低强度阈值。
        注:适当的阈值是根据核标记的信噪比凭经验确定的。
      4. 将classify_method设置为任一阈值(基于质心位置处的无监督荧光强度)或 svm(对监督线性支持向量机 (SVM) 分类器进行建模)。
        注意:此步骤将通过3通道成像将所有检测到的细胞分为四个主要类别。使用此协议,将生成 Ctip2+/Brn2-、Ctip2-/Brn2+、Ctip2-/Brn2- 和异常值。
    6. 分析步骤
      1. 指定示例名称。设置配置 =NM_config(分析,样本)。
      2. 通过指定NM_analyze(配置,阶段)来运行任何分析步骤,并使用重采样、寄存器、计数或分类指定阶段。检查输出目录中每个阶段的输出文件(图 5)。
    7. 细胞类型分类和分组分析
      1. 在NMe_template中, 设置 update = true 并覆盖之前计算的所有统计信息。
        注意:NMe_template.m 提供了跨被分析的同一大脑的大脑区域执行细胞类型组分析的选项。
      2. 将compare_structures_by设置为要按所有唯一批注进行比较的索引或设置为根据表比较结构的表。
      3. 设置 template_file,该指定所有可能的结构索引,并且必须存在于 /annotations 中。
      4. 设置 structure_table 并指定要评估的结构。
      5. 指定细胞计数和细胞类型分类,如 NMa_template.m 中所述。
      6. 设置 compare_groups 以指定要比较的组。
      7. 将配对设置为 true 或 false 以执行配对 t 检验或双样本 t 检验。
    8. 运行分析。
      注意:要执行此步骤,请在 NMe_template.m 环境之外的 Matlab 中运行以下命令。
      1. 指定示例名称。设置配置 =NM_config(评估,样本)。
      2. 通过指定 NM_evaluate(配置,阶段) 并指定阶段来运行分析步骤。检查输出目录中的输出文件以进行组分析。

结果

由于iDISCO+协议引入了明显的组织收缩,肉眼很容易注意到(图2B),我们在组织清除之前向该管道中添加了一个MRI步骤,以量化组织清除引起的收缩。工作流程从从MR图像中去除非脑组织开始(图2C)。接下来,应用刚性变换(3个平移和3个旋转角度)将MR图像与光片图像对齐(图2D)。通过这样做,我们观察到组织清除程序引起的...

讨论

组织清除方法是测量大脑3D细胞组织的有用技术。文献中描述了许多组织清除方法,每种方法都有其优点和局限性6789用于分析组织清除图像中细胞类型的计算工具的选项相对有限。其他可用的工具已经实施到稀疏细胞群,其中分割难度较低1035或?...

披露声明

作者没有利益冲突需要披露。

致谢

这项工作得到了NIH(R01MH121433,R01MH118349和R01MH120125到JLS和R01NS110791到GW)和希望基金会的支持。我们感谢显微镜服务实验室的Pablo Ariel协助样品成像。病理学和检验医学系的显微镜服务实验室得到了癌症中心核心支持拨款P30 CA016086对北卡罗来纳大学(UNC)Lineberger综合癌症中心的部分支持。神经科学显微镜核心由拨款P30 NS045892支持。本出版物中报告的研究部分得到了北卡罗来纳州生物技术中心机构支持补助金2016-IDG-1016的支持。

材料

NameCompanyCatalog NumberComments
Bruker 9.4T/30 cm MRI ScannerBruker BiospecHorizontal Bore Animal MRI System
Dibenzyl etherSigma-Aldrich108014-1KG
Dichloromethane (DCM)Sigma-Aldrich270997-1L
Dimethyl sulfoxide (DMSO)Fisher-ScientificICN19605590
Donkey serumSigma-AldrichS30-100ML
EVO 860 4TB external SSD
Fomblin YSpeciality Fluids CompanyYL-VAC-25-6perfluoropolyether lubricant
gadolinium contrast agent (ProHance)Bracco DiagnosticsA9576
gadolinium contrast agent(ProHance)Bracco Diagnostics0270-1111-03
GeForce GTX 1080 Ti 11GB GPUEVGA08G-P4-6286-KR
GlycineSigma-AldrichG7126-500G
Heparin sodium saltSigma-AldrichH3393-10KUDissolved in H2O to 10 mg/mL
Hydrogen peroxide solution, 30%Sigma-AldrichH1009-100ML
ImSpector ProLaVision BioTecMicroscope image acquisition software
ITK Snapsegmentation software
MethanolFisher-ScientificA412SK-4
MVPLAPO 2x/0.5 NA ObjectiveOlympus
Paraformaldehyde, powder, 95% (PFA)Sigma-Aldrich30525-89-4Dissolved in 1x PBS to 4%
Phosphate Buffered Saline 10x (PBS)Corning46-013-CMDiluted to 1x in H2O
Sodium AzideSigma-AldrichS2002-100GDissolved in H2O to 10%
Sodium deoxycholateSigma-AldrichD6750-10G
Tergitol type NP-40Sigma-AldrichNP40S-100ML
TritonX-100Sigma-AldrichT8787-50ML
Tween-20Fisher-ScientificBP337 500
Ultramicroscope II Light Sheet MicroscopeLaVision BioTec
Xeon Processor E5-2690 v4IntelE5-2690
Zyla sCMOS CameraAndorComplementary metal oxide semiconductor camera
AntibodyWorking concentration
Alexa Fluor Goat 790 Anti-RabbitThermofisher ScientificA11369(1:50)
Alexa Fluor Goat 568 Anti-RatThermofisher ScientificA11077(1:200)
Rat anti-Ctip2Abcamab18465(1:400)
Rabbit anti-Brn2Cell Signaling Technology12137(1:100)
To-Pro 3 (TP3)Thermofisher ScientificT3605(1:400)

参考文献

  1. Dodt, H. U., et al. Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods. 4 (4), 331-336 (2007).
  2. Hägerling, R., et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. The EMBO Journal. 32 (5), 629-644 (2013).
  3. Tomer, R., Khairy, K., Keller, P. J. Shedding light on the system: studying embryonic development with light sheet microscopy. Current Opinion in Genetics & Development. 21 (5), 558-565 (2011).
  4. Li, A., et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science. 330 (6009), 1404-1408 (2010).
  5. Stoner, R., et al. Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine. 370 (13), 1209-1219 (2014).
  6. Renier, N., et al. IDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 159 (4), 896-910 (2014).
  7. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157 (3), 726-739 (2014).
  8. Richardson, D. S., et al. Tissue clearing. Nature Reviews. Methods Primers. 1 (1), 84 (2021).
  9. Richardson, D. S., Lichtman, J. W. Clarifying tissue clearing. Cell. 162 (2), 246-257 (2015).
  10. Renier, N., et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell. 165 (7), 1789-1802 (2016).
  11. Santi, P. A. Light sheet fluorescence microscopy: a review. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 59 (2), 129-138 (2011).
  12. Girkin, J. M., Carvalho, M. T. The light-sheet microscopy revolution. Journal of Optics. 20 (5), 053002 (2018).
  13. Budday, S., et al. Mechanical properties of gray and white matter brain tissue by indentation. Journal of the Mechanical Behavior of Biomedical Materials. 46, 318-330 (2015).
  14. Johnson, G. A., et al. High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. NeuroImage. 37 (1), 82-89 (2007).
  15. Herculano-Houzel, S., Mota, B., Lent, R. Cellular scaling rules for rodent brains. Proceedings of the National Academy of Sciences of the United States of America. 103 (32), 12138-12143 (2006).
  16. Matsumoto, K., et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nature Protocols. 14 (12), 3506-3537 (2019).
  17. Fürth, D., et al. An interactive framework for whole-brain maps at cellular resolution. Nature Neuroscience. 21 (1), 139-149 (2018).
  18. Chandrashekhar, V., et al. CloudReg: automatic terabyte-scale cross-modal brain volume registration. Nature Methods. 18 (8), 845-846 (2021).
  19. Krupa, O., et al. NuMorph: Tools for cortical cellular phenotyping in tissue-cleared whole-brain images. Cell Reports. 37 (2), 109802 (2021).
  20. Petiet, A., Delatour, B., Dhenain, M. Models of neurodegenerative disease - Alzheimer's anatomical and amyloid plaque imaging. Methods in Molecular Biology. 771, 293-308 (2011).
  21. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., Smith, S. M. FSL. NeuroImage. 62, 782-790 (2012).
  22. Jenkinson, M., Bannister, P., Brady, M., Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 17 (2), 825-841 (2002).
  23. Avants, B. B., Epstein, C. L., Grossman, M., Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis. 12 (1), 26-41 (2008).
  24. . iDISCO method Available from: https://idisco.info/ (2022)
  25. Ariel, P. UltraMicroscope II - A User Guide. University of North Carolina at Chapel Hill. , (2019).
  26. . Anaconda Distribution - Anaconda documentation Available from: https://docs.anaconda.com/anaconda/ (2022)
  27. Peng, T., et al. A BaSiC tool for background and shading correction of optical microscopy images. Nature Communications. 8, 14836 (2017).
  28. Klein, S., Staring, M., Murphy, K., Viergever, M. A., Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging. 29, 196-205 (2010).
  29. Lowe, G. Sift-the scale invariant feature transform. International Journal. 2 (91-110), 2 (2004).
  30. Young, D. M., et al. Whole-brain image analysis and anatomical atlas 3D generation using MagellanMapper. Current Protocols in Neuroscience. 94 (1), 104 (2020).
  31. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  32. Velíšek, L. Under the (Light) sheet after the iDISCO. Epilepsy Currents / American Epilepsy Society. 16 (6), 405-407 (2016).
  33. Young, D. M., et al. Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain. eLife. 10, (2021).
  34. Yun, D. H., et al. Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping. bioRxiv. , (2019).
  35. Silvestri, L., et al. Universal autofocus for quantitative volumetric microscopy of whole mouse brains. Nature Methods. 18 (8), 953-958 (2021).
  36. Frasconi, P., et al. Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images. Bioinformatics. 30 (17), 587 (2014).
  37. Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society. American Mathematical Society. 7 (1), 48-50 (1956).
  38. Wang, Q., et al. The allen mouse brain common coordinate framework: A 3D reference atlas. Cell. 181, 936-953 (2020).
  39. Borland, D., et al. Segmentor: a tool for manual refinement of 3D microscopy annotations. BMC Bioinformatics. 22 (1), 260 (2021).
  40. Kumar, A., et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nature Protocols. 9 (11), 2555-2573 (2014).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

186

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。