JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们描述了基于原代人脑微血管内皮细胞,星形胶质细胞和周细胞建立血脑屏障三重细胞培养模型的方法。该多细胞模型适用于 体外缺 血性卒中期间神经血管单元功能障碍的研究或候选药物的筛选。

摘要

缺血性中风是全世界死亡和残疾的主要原因,治疗选择有限。缺血性中风的神经病理学特征是大脑血液供应中断,导致细胞死亡和认知功能障碍。在缺血性卒中期间和之后,血脑屏障(BBB)功能障碍会促进损伤进展,并导致患者恢复不良。目前的BBB模型主要包括内皮单培养和与星形胶质细胞或周细胞的双重共培养。

这种模型缺乏完全模仿动态大脑微环境的能力,这对于细胞间通信至关重要。此外,常用的BBB模型通常包含永生化的人内皮细胞或动物源性(啮齿动物,猪或牛)细胞培养物,这些细胞培养物具有翻译局限性。本文描述了一种基于插入良好的新型BBB模型,该模型仅包含原代人细胞(脑微血管内皮细胞,星形胶质细胞和脑血管周细胞),能够在 体外研究缺血性脑损伤。

通过被动通透性、经内皮电阻(TEER)测量和缺氧细胞直接可视化评估氧-葡萄糖剥夺(OGD)对屏障完整性的影响。所提出的方案在 模拟体内BBB的细胞间环境方面具有明显的优势,可作为更现实的 体外 BBB模型,用于在缺血性脑损伤的情况下开发新的治疗策略。

引言

中风是全球死亡和长期残疾的主要原因之一1。卒中的发病率随着年龄的增长而迅速增加,55岁以后每10年翻一番2.缺血性卒中是由于血栓和栓塞事件引起的脑血流中断而发生的,占所有卒中病例的80%以上3。即使是现在,可用于减少缺血性中风后组织死亡的治疗选择也相对较少。确实存在的治疗方法对时间敏感,因此并不总是导致良好的临床结果。因此,迫切需要研究缺血性脑卒中影响脑卒中后恢复的复杂细胞机制。

BBB是血液和脑实质之间分子交换的动态界面。在结构上,BBB由脑微血管内皮细胞组成,这些细胞由基底膜包围的连接复合物,周细胞和星形胶质细胞尾足4相互连接。周细胞和星形胶质细胞通过分泌形成强而紧密的连接所必需的各种因子在维持BBB完整性方面起着至关重要的作用56。BBB的分解是缺血性中风的标志之一。与脑缺血相关的急性炎症反应和氧化应激导致紧密连接蛋白复合物的破坏和星形胶质细胞、周细胞和内皮细胞之间的串扰失调,从而导致 BBB7 的细胞旁溶质通透性增加。BBB功能障碍进一步促进脑水肿的形成,增加出血转化的风险8。考虑到上述所有因素,人们对了解缺血性中风期间和之后BBB水平发生的分子和细胞变化非常感兴趣。

尽管近几十年来已经开发了许多体外BBB模型并用于各种研究,但它们都不能完全复制体内条件9。虽然一些模型基于在插入良好的渗透性载体上单独培养或与周细胞或星形胶质细胞组合培养的内皮细胞单层,但只有最近的研究引入了三重细胞培养模型设计。几乎所有现有的三重培养BBB模型都包含原代脑内皮细胞以及从动物物种中分离的星形胶质细胞和周细胞或来自人类多能干细胞的细胞10,11,1213

认识到需要在体外 更好地概括人BBB,我们建立了由人脑微血管内皮细胞(HBMEC),原代人星形胶质细胞(HA)和原代人脑血管周细胞(HBVP)组成的三细胞培养 体外 BBB模型。该三重培养BBB模型设置在孔径为0.4μm的6孔板聚酯膜插入物上。这些孔插入物为细胞附着提供了最佳环境,并可轻松进入顶端(血液)和基底外侧(脑)隔室,以进行培养基采样或化合物应用。通过测量模拟缺血性中风的体 OGD后的TEER和细胞旁通量来评估该三细胞培养BBB模型的特征,通过使用加湿的密封室实现氧气(<1%O2)和营养物质(通过使用无葡萄糖培养基)。此外,该模型中诱导的缺血样条件通过缺氧细胞的直接可视化得到准确验证。

研究方案

注意:有关此协议中使用的所有电池,材料,设备和溶液的详细信息,请参阅 材料表

1. 三细胞培养BBB模型设置

  1. 接种周细胞
    1. 在具有活化表面的T75培养瓶中培养HBVP,以便在37°C的5%CO2 培养箱中粘附细胞直至汇合。一旦达到汇合,吸出旧的周细胞培养基,并用5mL温热的Dulbecco磷酸盐缓冲盐水(DPBS)洗涤细胞。吸出DPBS并使用4mL温热胰蛋白酶-EDTA溶液和1mLDPBS的组合将细胞从烧瓶中分离。
      注意:避免使用晚于 P7 的段落。
    2. 将烧瓶在CO2 培养箱中于37°C孵育5分钟。在显微镜下观察以确认细胞是否与烧瓶分离。向烧瓶中加入 5 mL 温热的周细胞培养基(含有 2% 胎牛血清 [FBS]),并将分离的细胞转移到 50 mL 离心管中。
    3. 以200× g离心细胞悬液3分钟,使细胞在管底部形成沉淀。从管中吸出培养基,确保细胞沉淀保持完整。
    4. 将细胞沉淀重悬于周细胞培养基中;根据细胞的汇合度和所需的孔插入次数计算培养基量。取 10 μL 重悬细胞,将它们放入细胞计数载玻片中,并计数细胞数。
    5. 确定细胞密度并将 300,000 个细胞/插入 1 mL 周细胞培养基中接种到孔插入物(6 孔格式)的光侧。
      注意: 在嵌件底部播种HBVP时,首先将孔插入板倒置非常重要。当板平放在表面上时,移除底部以露出孔插入物的光面。将周细胞悬液添加到铝侧后,用翻转的板覆盖孔插入物以防止蒸发。将所有板倒置在37°C的5%CO2 培养箱中过夜。
  2. 播种星形胶质细胞
    1. 在37°C的5%CO2 培养箱内的T75烧瓶中培养HA,直到达到汇合。按照上述步骤1.1.1-1.1.4使用星形胶质细胞培养基(也含有2%FBS)代替周细胞培养基。
      注意:避免使用晚于 P9 的段落。
    2. 确定细胞密度并将 300,000 个细胞/孔接种到组织培养 6 孔板的底部。盖上板以防止蒸发,并将所有板保持在37°C的5%CO2 培养箱中过夜。
  3. 接种内皮细胞
    1. 在37°C的5%CO2 培养箱内的组织培养皿中培养HBMEC,直至汇合。按照上述步骤1.1.1-1.1.4使用完整的经典培养基(含有10%FBS)代替周细胞培养基。
      注意:避免使用晚于 P12 的段落。
    2. 在37°C下从5%CO2 培养箱中取出含有星形胶质细胞的组织培养6孔板和含有周细胞的孔插入物(6孔格式)。 从组织培养6孔板中吸出星形胶质细胞培养基。向每个孔中加入 1 mL 周细胞培养基和 1 mL 星形胶质细胞培养基。
    3. 从孔插入物中吸出周细胞培养基,并将其放入含有接种星形胶质细胞的组织培养6孔板中。在 2 mL 的完整经典培养基中以 300,000 个细胞/孔的密度接种 HBMEC 到同一孔插入物的顶端侧。
      注意:在将周细胞接种在孔插入物的光位侧和星形胶质细胞在组织培养6孔板上后,应在第二天将内皮细胞接种在孔插入物的顶端侧。细胞应在三重培养物中维持6天,以诱导BBB样特性。实验前24小时应在两个插入孔室中更换细胞培养基。

2.诱导氧葡萄糖剥夺

  1. 用DPBS洗涤细胞3次。对于接受OGD的三重细胞培养物,将无葡萄糖培养基(不含L-谷氨酰胺和酚红)添加到顶端和基底外侧区室中。在常氧对照细胞培养物中用新鲜培养基替换培养基。将对照三重培养物置于37°C的5%CO2 培养箱中。
    注意:在诱导OGD之前或OGD之后立即改变培养基可能会产生机械应力,从而进一步影响内皮细胞单层。因此,包括用于常氧对照细胞培养的培养基置换步骤。
  2. 将含有20mL无菌水的培养皿置于缺氧培养箱中,以提供足够的培养物加湿。松开环夹打开腔室。将细胞培养物放在架子上。通过固定环夹密封腔室。
  3. 打开腔室的入口和出口。将来自流量计顶部的管道连接到腔室。通过空气过滤器来自流量计底部的管道连接到装有 95% N 2/5% CO2 气体混合物的气罐。 
  4. 逆时针转动罐体流量控制阀以允许最小的气体流量。顺时针转动,缓慢打开调压阀。
  5. 用气体混合物以20 L / min的流速冲洗腔室5分钟。断开腔室与气源的连接,并牢固地关闭两个白色塑料夹。
  6. 顺时针转动关闭储罐流量控制阀。逆时针转动关闭压力调节阀。
  7. 将缺氧室置于37°C的常规培养箱中4小时。
    注意:为了添加随后的复氧期,用DPBS洗涤细胞3次,在所有三重培养物中加入新鲜培养基,并在37°C的5%CO2 培养箱中再保持24小时。 根据制造商的说明,用厌氧气体混合物以20 L / min吹扫不少于4分钟后,腔室中剩余的氧气浓度为0%。

3. TEER 测量

  1. 将灭菌的TEER仪器放入生物安全柜中,并将电极插入上皮伏欧表。在 30 mL 的 70% 异丙醇溶液中对电极进行灭菌至少 30 分钟。
  2. 打开TEER仪器并将 功能 设置为 欧姆
  3. 从 70% 异丙醇溶液中取出电极,并将它们放入 20 mL DPBS 中至少 30 分钟,直到 TEER 设备上的数字读数读数为 0 欧姆
  4. 将电极的长插脚插入空白井插入控件的井插入衣架中的三个开口之一,将其降低直至接触孔底部。确保短插脚位于孔插入物底部的顶端培养物上方。
    注意:空白孔插入对照由顶端隔室中的 2 mL 完全经典培养基和基底外侧隔室中的 1 mL 周细胞培养基和 1 mL 星形胶质细胞培养基的组合组成。在进行TEER测量时,确定电极与孔插入物成90°。使用在同一孔(每个开口)中获得的两个或三个读数的平均值可以帮助减少变异性。
  5. 等到 TEER 仪器上的数字读数值水平关闭后再记录该值。将电极放回DPBS中,以便在测量之间清洗它们。继续收集另外两个空白孔插入对照的所有TEER测量值。
  6. 使用用于控制测量的步骤 3.4-3.5 收集样品板的 TEER 测量值。完成所有测量后,将电极放回70%异丙醇溶液中30分钟。断开电极与TEER仪器的连接,使其风干。
  7. 计算 TEER 值。使用公式(1)从样品的欧姆值中减去空白孔插入对照的平均欧姆值,然后将该电阻值乘以膜插入的面积(cm 2),得到报告的TEER值,单位为Ω∙cm2
    figure-protocol-32141

4. BBB细胞旁通透性的评估

注意:在关闭灯的细胞培养生物安全柜中执行涉及FITC-葡聚糖的所有步骤。用铝箔覆盖FITC-葡聚糖溶液,以尽量减少光漂白。

  1. 使用不含酚红的内皮细胞生长培养基制备含有20和70kDa(0.1mg / mL)的FITC-葡聚糖的溶液,并在摇床上搅拌1小时。使用0.22μm注射器过滤器过滤溶液。
  2. 从基底外侧隔室吸出培养基,并在三细胞培养BBB模型中用2 mL无酚红内皮细胞生长培养基替换。用汉克斯平衡盐溶液(HBSS)洗涤顶端隔室中的细胞两次。
  3. 在顶端隔室中加入 1 mL FITC-葡聚糖溶液,并用铝箔覆盖板。将板放入37°C的5%CO2 培养箱中1小时。
  4. 从基底外侧隔室中取出 100 μL 培养基,并将其转移到黑色 96 孔板中。使用酶标仪测量荧光,激发和发射波长分别设置为 480 nm 和 530 nm。

5. 活细胞缺氧检测

  1. 将 200 μL HBMEC、HA 和 HBVP 接种在聚-d-赖氨酸包被的 35 mm 玻璃底培养皿的中心,密度为 150,000 个细胞/培养皿。在播种HBMEC之前,在培养皿的底部涂上附着因子。通过在CO2培养箱中将其在37°C下放置过夜,使细胞附着在玻璃表面上。
    注意:重要的是将具有人原代细胞的培养皿与三孔插入BBB模型同时放置在缺氧室中进行OGD
  2. 一旦达到汇合,丢弃培养基并加入 2 mL 预热的无葡萄糖培养基(用于 OGD)或含有 2 μL 1 mM Hoechst 33342(终浓度 0.2 μM)和 0.5 μL 参考 Image-iT 绿色缺氧试剂(终浓度 1 μM)的 5 mM 储备溶液。OGD处理后,在所有培养皿中用成像优化培养基替换培养基。
  3. 如前所述,使用GFP滤光片和顶级共聚焦显微镜培养箱进行荧光活细胞成像14,15

结果

为了研究星形胶质细胞和周细胞对HBMEC屏障功能的影响,我们在细胞培养插入物上构建了三重细胞培养BBB模型(图1A),以及HBMEC单培养和两个双共培养模型作为对照(图1B)。双重共培养对照包括HBMEC与HA的非接触共培养以及HBMEC与HBVP的接触共培养。共培养6天后,所有实验装置均接受OGD4小时。通过在OGD前后以及复氧24小时后测定TEER,评估所述BBB配置中?...

讨论

在该协议中,我们描述了一种建立可靠的三重内皮细胞 - 周细胞 - 星形胶质细胞培养BBB模型的方法,用于研究 体外缺血性中风情况下的BBB功能障碍。考虑到周细胞是 体内 内皮细胞的最近邻,HBVP在该模型16中接种在孔插入物的下侧。虽然这种配置缺乏星形胶质细胞和内皮细胞之间的直接细胞间通讯,但这种排列允许通过分泌的可溶性因子 细胞类型之间进?...

披露声明

所有作者都透露不存在利益冲突。

致谢

这项工作得到了美国国立卫生研究院(NIH)资助MH128022,MH122235,MH072567,MH122235,HL126559,DA044579,DA039576,DA040537,DA050528和DA047157的支持。

材料

NameCompanyCatalog NumberComments
24 mm Transwell with 0.4 µm Pore Polyester Membrane InsertCorning3450
35 mm Glass Bottom DishesMatTek Life Sciences (FISHERSCI)P35GC-1.5-14-C
Astrocyte MediumScience Cell1801
Attachment FactorCell Systems (Fisher Scientific)4Z0-201
BD 60 mL SyringeBD309653
BrainPhys Imaging Optimized MediumSTEMCELL Technologies5791
Complete Classic Medium With Serum and CultureBoost4Z0-500Cell Systems
Corning 50 mL PP Centrifuge Tubes (Conical Bottom with CentriStar CapVWR430829
Corning 75cm² U-Shaped Canted Neck Not Treated Cell Culture Flask Corning431464U
Corning CellBIND 96-well Flat Clear Bottom Black Polystyrene MicroplatesCorning3340
Countes Cell Counting Chamber SlidesThermo Fisher ScientificC10228
Countess II FL Automated Cell CounterThermo Fisher ScientificZGEXSCCOUNTESS2FL
Decon CiDehol 70 Isopropyl Alcohol Solution Fisher Scientific 04-355-71
Disposable Petri DishesVWR25384-088
DMEM Medium (No glucose, No glutamine, No phenol red)ThermoFisherA14430-01Glucose-free medium
DPBS (No Calcium, No Magnesium)ThermoFisher14190250
EBM Endothelial Cell Growth Basal Medium, Phenol Red Free, 500 mLLonzaCC-3129
EVOM2 Epithelial Volt/Ohm (TEER) Meter with STX2 electrodesWorld Precison InstrumentsNC9792051Epithelial voltohmmeter 
Fluorescein isothiocyanate–dextran (wt 20,000)Millipore SigmaFD20-250MG
Fluorescein isothiocyanate–dextran (wt 70,000)Millipore SigmaFD70S-250MG
Fluorview FV3000 Confocal MicroscopeOlympusFV3000
Gas Tank (95% N2, 5% CO2)AirgasX02NI95C2003071
HBSS (No calcium, No magnesium, no phenol red)Thermofisher14025092
Hoechst 33342, Trihydrochloride, Trihydrate - 10 mg/mL Solution in WaterThermoFisherH3570
Human AstrocytesScience Cell1800
Human Brain Vascular PericytesScience Cell1200
Hypoxia Incubator ChamberSTEMCELL Technologies27310
Image-iT Green Hypoxia ReagentThermoFisherI14834
Pericyte MediumScience Cell1201
Primary Human Brain Microvascular Endothelial CellsACBRI 376Cell Systems
Rocking Platform Shaker, DoubleVWR10860-658
Single Flow MeterSTEMCELL Technologies27311
SpectraMax iD3 Microplate ReaderMolecular Devices75886-128
Syringe Filter, 25 mm, 0.22 μm, PVDF, SterileNEST Scientific380121
TPP Mutli-well Plates (6 wells)MidSciTP92406
TPP Tissue Culture Flasks T-75 FlasksMidSciTP90075Flasks with activated surface for cell adhesion
Trypsin-EDTA (0.25%), phenol redThermoFisher25200056
UltraPure Distilled WaterInvitrogen (Life Technologies)10977-015
Uno Stage Top Incubator-Oko LabUNO-T-H-CO2-TTL

参考文献

  1. Mozaffarian, D., et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 133 (94), 38 (2016).
  2. Yousufuddin, M., Young, N. Aging and ischemic stroke. Aging. 11 (9), 2542-2544 (2019).
  3. Donkor, E. S. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Research and Treatment. , 3238165 (2018).
  4. Kadry, H., Noorani, B., Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS. 17 (1), 69 (2020).
  5. Brown, L. S., et al. Pericytes and neurovascular function in the healthy and diseased brain. Frontiers in Cellular Neuroscience. 13, 282 (2019).
  6. Cabezas, R., et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson's disease. Frontiers in Cellular Neuroscience. 8, 211 (2014).
  7. Abdullahi, W., Tripathi, D., Ronaldson, P. T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. American Journal of Physiology-Cell Physiology. 315 (3), 343-356 (2018).
  8. Candelario-Jalil, E., Dijkhuizen, R. M., Magnus, T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 53 (5), 1473-1486 (2022).
  9. He, Y., Yao, Y., Tsirka, S. E., Cao, Y. Cell-culture models of the blood-brain barrier. Stroke. 45 (8), 2514-2526 (2014).
  10. Thomsen, L. B., Burkhart, A., Moos, T. A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS One. 10 (8), 0134765 (2015).
  11. Song, Y., Cai, X., Du, D., Dutta, P., Lin, Y. Comparison of blood-brain barrier models for in vitro biological analysis: one cell type vs three cell types. ACS Applied Bio Materials. 2 (3), 1050-1055 (2019).
  12. Xu, L., et al. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. International Journal of Nanomedicine. 10, 6105-6118 (2015).
  13. Appelt-Menzel, A. Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Reports. 8 (4), 894-906 (2017).
  14. Zhang, Y., et al. Rational construction of a reversible arylazo-based NIR probe for cycling hypoxia imaging in vivo. Nature Communications. 12 (1), 2772 (2021).
  15. Palacio-Castañeda, V., Kooijman, L., Venzac, B., Verdurmen, W. P. R., Le Gac, S. Metabolic switching of tumor cells under hypoxic conditions in a tumor-on-a-chip model. Micromachines. 11 (4), 382 (2020).
  16. Ramsauer, M., Krause, D., Dermietzel, R. Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB Journal. 16 (10), 1274-1276 (2002).
  17. Lyck, R., et al. ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood-brain barrier. Journal of Cerebral Blood Flow & Metabolism. 37 (8), 2894-2909 (2017).
  18. Rizzi, E., et al. A triple culture cell system modeling the human blood-brain barrier. Journal of Visualized Experiments. (177), (2021).
  19. Kumar, S., Shaw, L., Lawrence, C., Lea, R., Alder, J. P50: Developing a physiologically relevant blood brain barrier model for the study of drug disposition in glioma. Neuro-Oncology. 16 (6), (2014).
  20. Stone, N. L., England, T. J., O'Sullivan, S. E. A novel transwell blood brain barrier model using primary human cells. Frontiers in Cellular Neuroscience. 13, 230 (2019).
  21. Al Ahmad, A., Taboada, C. B., Gassmann, M., Ogunshola, O. O. Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. Journal of Cerebral Blood Flow & Metabolism. 31 (2), 693-705 (2011).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

188

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。