登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The murine intrapulmonary tracheal transplantation (IPTT) model is valuable for studying obliterative airway disease (OAD) after lung transplantation. It offers insights into lung-specific immunological and angiogenic behavior in airway obliteration after allotransplantation with high reproducibility. Here, we describe the IPTT procedure and its expected results.

Abstract

Murine intrapulmonary tracheal transplantation (IPTT) is used as a model of obliterative airway disease (OAD) following lung transplantation. Initially reported by our team, this model has gained use in the study of OAD due to its high technical reproducibility and suitability for investigating immunological behaviors and therapeutic interventions.

In the IPTT model, a rodent tracheal graft is directly inserted into the recipient's lung through the pleura. This model is distinct from the heterotopic tracheal transplantation (HTT) model, wherein grafts are transplanted into subcutaneous or omental sites, and from the orthotopic tracheal transplantation (OTT) model in which the donor trachea replaces the recipient's trachea.

Successful implementation of the IPTT model requires advanced anesthetic and surgical skills. Anesthetic skills include endotracheal intubation of the recipient, setting appropriate ventilatory parameters, and appropriately timed extubation after recovery from anesthesia. Surgical skills are essential for precise graft placement within the lung and for ensuring effective sealing of the visceral pleura to prevent air leakage and bleeding. In general, the learning process takes approximately 2 months.

In contrast to the HTT and OTT models, in the IPTT model, the allograft airway develops airway obliteration in the relevant lung microenvironment. This allows investigators to study lung-specific immunological and angiogenic processes involved in airway obliteration after lung transplantation. Furthermore, this model is also unique in that it exhibits tertiary lymphoid organs (TLOs), which are also seen in human lung allografts. TLOs are comprised of T and B cell populations and characterized by the presence of high endothelial venules that direct immune cell recruitment; therefore, they are likely to play a crucial role in graft acceptance and rejection. We conclude that the IPTT model is a useful tool for studying intrapulmonary immune and profibrotic pathways involved in the development of airway obliteration in the lung transplant allograft.

Introduction

Lung transplantation has been established as an effective treatment for patients with end-stage respiratory diseases. However, the median survival rate for human lung transplant recipients is only approximately 6 years, with the development of obliterative bronchiolitis (OB), a type of obstructive airway disease (OAD), being a major cause of death after the first year post transplantation1.

Several animal models have been utilized to investigate the mechanism underlying OAD. One such model is the heterotopic tracheal transplantation (HTT) model2. In this model, tracheal grafts are implanted in....

Protocol

All animals were treated in accordance with the guidelines set forth by the Canadian Council on Animal Care in the Guide to the Care and Use of Experimental Animals. The experimental protocol was approved by the Animal Care Committee of the Toronto General Hospital Research Institute, University Health Network.

1. Donor surgery

NOTE: BALB/c mice are used as an example of donors for the experiment. All procedures must be performed utilizing a sterile t.......

Representative Results

Based on our experience, proficiency in this model typically requires approximately 2 months of training. Once proficiency is achieved, the donor procedures typically require 15 min, while the recipient procedures require approximately 30 min. The expected mortality rate for a trained operator is 0%.

In Figure 4A, a tracheal allograft exhibits complete obstruction with fibroblastic tissue, and the epithelial cells are visibly destroyed. Conversely, in

Discussion

The murine IPTT procedure includes critical steps. Regarding anesthesia, the first crucial step is endotracheal intubation. It is essential to hold the mouse at an appropriate height with its legs on the table to visualize the vocal cords and facilitate immediate intubation. Additionally, careful respiratory volume and positive end-expiratory pressure (PEEP) adjustment is necessary. Typically, a respiratory volume of 500 µL and a PEEP of 2 cmH2O are sufficient for mice weighing 25-30 g. However, larger re.......

Acknowledgements

The authors would like to thank Jerome Valero for editing this manuscript. Figure 1 and Figure 3I,J,L were created with BioRender.com.

....

Materials

NameCompanyCatalog NumberComments
BALB/cJThe Jackson Laboratory8-10 weeks 25-30 gMale, Donor
BD 1 mL SyringeBecton Dickinson309659
BD PrecisionGlide Needle Aiguile BD
PrecisionGlide
Becton Dickinson305122
Bovie Change-A-Tip Deluxe High-TempertureBovieDEL1
C57BL/6JThe Jackson Laboratory8-10 weeks 25-30 gMale, Recipient
Dumont #5/45 ForcepsF·S·T11251-35
Ethicon Ligaclip Multiple -Clip Appliers-EthiconLX107
Extra Fine Graefe ForcepsF·S·T11150-10
Glover Bulldog ClampIntegra320-127
Halsted-Mosquito HemostatsF·S·T13009-12
Horizon Titanium Ligating ClipsTeleflex001201
Leica M651 Manual surgical microscope for microsurgical proceduresLeica
Magnetix Fixator with spring lockCD+ LABSACD-001
Microsurgical ScissorJarit277-051
Mouse and Perinatal Rat Ventilator Model 687Harvard55-0001
Perfadex PlusXVIVO19850
Retractor Tip Blunt - 2.5 mmCD+ LABSACD-011
small animal tableCD+ LABSACD-003
Surgipro Blue 24" CV-1 Taper, Double ArmedCovidienVP702X
Systane ointmentAlconn1444062
System ElastomerCD+ LABSACD-007
Terumo Surflo IV Catheter, 20 G x 1 inTerumo Medical CorporationSR-OX2025CA
VMT table Topbenson91803300

References

Explore More Articles

Murine Intrapulmonary Tracheal TransplantationObliterative Airway DiseaseLung TransplantationChronic Lung Allograft DysfunctionAirway ObliterationAllograftIsograftFibrosisImmunological BehaviorsTherapeutic InterventionsAnesthetic SkillsSurgical Skills

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。