Cross Cylindrical Flow: Measuring Pressure Distribution and Estimating Drag Coefficients

Overview

Source: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

The pressure distributions and drag estimations for cross cylindrical flow have been investigated for centuries. By ideal inviscid potential flow theory, the pressure distribution around a cylinder is vertically symmetric. The pressure distribution upstream and downstream of the cylinder is also symmetric, which results in a zero-net drag force. However, experimental results yield very different flow patterns, pressure distributions and drag coefficients. This is because the ideal inviscid potential theory assumes irrotational flow, meaning viscosity is not considered or taken into account when determining the flow pattern. This differs significantly from reality.

In this demonstration, a wind tunnel is utilized to generate a specified airspeed, and a cylinder with 24 ports of pressure is used to collect pressure distribution data. This demonstration illustrates how the pressure of a real fluid flowing around a circular cylinder differs from predicted results based on the potential flow of an idealized fluid. The drag coefficient will also be estimated and compared to the predicted value.

Procedure

1. Measuring the pressure distribution around a cylinder

  1. Remove the top cover of the test section of a wind tunnel, and mount a clean, aluminum cylinder (d = 4 in) with 24 built-in ports on a turntable (Figure 3). Install the cylinder so that port zero is facing upstream (Figure 4a).
  2. Replace the top cover, and connect the 24 pressure tubes labeled 0 - 23 to the corresponding ports on the manometer panel. The manometer panel

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

Experimental results for the clean and disturbed cylinder are shown in Tables 1 and 2, respectively. The data can be plotted in a graph of the pressure coefficient, Cp, versus angular position, θ, for ideal and real flow as shown in Figure 6.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

Cross cylindrical flow has been investigated theoretically and experimentally since the 18th century. Finding the discrepancies between the two allows us to expand our understanding of fluid dynamics and explore new methodologies. Boundary layer flow theory was developed by Prandtl [3] in early 20th century, and it is a good example of the extension of inviscid flow to viscid flow theory in solving D’Alembert’s Paradox.

In this experiment, the cross cylindrical flow was investigate

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. d'Alembert, Jean le Rond (1752), Essai d'une nouvelle théorie de la résistance des fluides
  2. John D. Anderson (2017), Fundamentals of Aerodynamics, 6th Edition, ISBN: 978-1-259-12991-9, McGraw-Hill
  3. Prandtl, Ludwig (1904), Motion of fluids with very little viscosity, 452, NACA Technical Memorandum
Tags
Cross Cylindrical FlowMeasuring Pressure DistributionEstimating Drag CoefficientsFluid Flow Around A CylinderInviscid Potential Flow TheorySymmetric Pressure DistributionZero Net Drag ForceExperimental ResultsFlow PatternsViscosity Of FluidBoundary LayerViscous ForcesSkin Friction DragFlow SeparationLow Pressure WakePressure DifferentialReynolds NumberFluid DensityFree Stream Velocity

跳至...

0:01

Concepts

3:01

Measuring the Pressure Distribution Around a Cylinder

5:11

Results

此集合中的视频:

article

Now Playing

Cross Cylindrical Flow: Measuring Pressure Distribution and Estimating Drag Coefficients

Aeronautical Engineering

16.0K Views

article

模型飞机的空气动力学性能:DC-6B

Aeronautical Engineering

8.1K Views

article

推进器特性:音高、直径和叶片数在性能上的变化

Aeronautical Engineering

26.0K Views

article

机翼行为:克拉克Y-14翼上的压力分布

Aeronautical Engineering

20.8K Views

article

Clark Y-14 翼性能:高提升设备的部署(片和板条)

Aeronautical Engineering

13.2K Views

article

湍流球法:评估风洞流量质量

Aeronautical Engineering

8.6K Views

article

喷嘴分析:沿聚合和融合分流喷嘴的马赫数和压力的变化

Aeronautical Engineering

37.6K Views

article

施利伦成像:一种可视化超音速流特性的技术

Aeronautical Engineering

11.2K Views

article

水隧道中的流量可视化:在三角洲翼上观察前沿涡流

Aeronautical Engineering

7.8K Views

article

表面染料流可视化:观察超音速流中条纹模式的定性方法

Aeronautical Engineering

4.8K Views

article

皮托静态管:测量气流速度的设备

Aeronautical Engineering

48.4K Views

article

恒温测量:研究湍流边界层流的工具

Aeronautical Engineering

7.1K Views

article

压力传感器:使用皮托静态管进行校准

Aeronautical Engineering

8.4K Views

article

实时飞行控制:嵌入式传感器校准和数据采集

Aeronautical Engineering

10.0K Views

article

多直升机空气动力学:六轴飞行器上的特征推力

Aeronautical Engineering

9.0K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。

Pressure port #