Anmelden

Shortly after de Broglie published his ideas that the electron in a hydrogen atom could be better thought of as being a circular standing wave instead of a particle moving in quantized circular orbits, Erwin Schrödinger extended de Broglie’s work by deriving what is now known as the Schrödinger equation. When Schrödinger applied his equation to hydrogen-like atoms, he was able to reproduce Bohr’s expression for the energy and, thus, the Rydberg formula governing hydrogen spectra. Schrödinger described electrons as three-dimensional stationary waves, or wavefunctions, represented by the Greek letter psi, ψ

A few years later, Max Born proposed an interpretation of the wavefunction ψ that is still accepted today: Electrons are still particles, and so the waves represented by ψ are not physical waves but, instead, are complex probability amplitudes. The square of the magnitude of a wavefunction ∣ψ2 describes the probability of the quantum particle being present near a certain location in space. This means that wavefunctions can be used to determine the distribution of the electron’s density with respect to the nucleus in an atom. In the most general form, the Schrödinger equation can be written as:

Eq1

where, Ĥ is the Hamiltonian operator, a set of mathematical operations representing the total energy (potential plus kinetic) of the quantum particle (such as an electron in an atom), ψ is the wavefunction of this particle that can be used to find the special distribution of the probability of finding the particle, and  E  is the actual value of the total energy of the particle.

Schrödinger’s work, as well as that of Heisenberg and many other scientists following in their footsteps, is generally referred to as quantum mechanics.

The quantum mechanical model describes an orbital as a three-dimensional space around the nucleus within an atom, where the probability of finding an electron is the highest. 

This text is adapted from Openstax, Chemistry 2e, Section 6.3: Development of Quantum Theory.

Tags

JoVE CoreJoVE Core Chemistry Chapter 7JoVE Core Chemistry Lesson 981

Aus Kapitel 7:

article

Now Playing

7.9 : Das quantenmechanische Modell eines Atoms

Elektronische Struktur von Atomen

41.4K Ansichten

article

7.1 : Das Licht als Welle

Elektronische Struktur von Atomen

47.7K Ansichten

article

7.2 : Das elektromagnetische Spektrum

Elektronische Struktur von Atomen

52.1K Ansichten

article

7.3 : Interferenz und Beugung

Elektronische Struktur von Atomen

29.4K Ansichten

article

7.4 : Photoelektrischer Effekt

Elektronische Struktur von Atomen

28.9K Ansichten

article

7.5 : Das Bohrsche Atommodell

Elektronische Struktur von Atomen

48.8K Ansichten

article

7.6 : Emissionsspektren

Elektronische Struktur von Atomen

48.4K Ansichten

article

7.7 : Die Materiewelle nach de Broglie

Elektronische Struktur von Atomen

25.1K Ansichten

article

7.8 : Das Heisenbergsche Unschärferelation

Elektronische Struktur von Atomen

22.7K Ansichten

article

7.10 : Quantenzahlen

Elektronische Struktur von Atomen

33.9K Ansichten

article

7.11 : Atomorbitale

Elektronische Struktur von Atomen

32.6K Ansichten

article

7.12 : Das Paulische Ausschließungsprinzip

Elektronische Struktur von Atomen

32.7K Ansichten

article

7.13 : Die Energien von Atomorbitalen

Elektronische Struktur von Atomen

23.4K Ansichten

article

7.14 : Das Aufbauprinzip und die Hundschen Regeln

Elektronische Struktur von Atomen

41.6K Ansichten

article

7.15 : Elektronenkonfiguration von Multielektronenatomen

Elektronische Struktur von Atomen

36.7K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten