Anmelden

The equilibrium binding constant (Kb) quantifies the strength of a protein-ligand interaction. Kb can be calculated as follows when the reaction is at equilibrium:

Eq1

where P and L are the unbound protein and ligand, respectively, and PL is the protein-ligand complex.

As the amount of bound ligand is also related to the rate of ligand binding, experiments can also determine Kb by examining the rates of protein-ligand association (kon) and dissociation (koff) using the following ratio:

Eq1

Thus, two categories of binding assays are used to determine the equilibrium binding constant – those that measure equilibrium concentrations and those that measure a reaction’s kinetics. In case, the reaction must be at equilibrium at the time of measurement.

The method of determining the equilibrium concentrations depends on the desired sensitivity and ease of signal detection. For these reasons, spectroscopic assays are most widely used. In these experiments, the reaction produces an absorbance change of a reactant or a product at a given wavelength, detectable by a UV-Vis spectrophotometer. Alternatively, the reactant or product can be tagged with a fluorescent probe or may contain an intrinsic fluorophore. Then, the reaction progress can be measured from the change in fluorescence. These assays are performed by varying one reactant’s concentrations while the rest of the experiment is held constant. The results can then be graphed and analyzed with various curve fitting methods.

Interactions between proteins and ligands are also studied using a variety of biochemical and spectroscopic techniques. Structural analysis, using X-ray crystallography and NMR spectroscopy, aids in predicting protein-ligand interactions through molecular simulations. Theoretical and computational approaches, such as protein-ligand docking studies, are used extensively to characterize the position and interactions of small molecule ligands, including drug candidates. Computer-aided drug design is a fast and low-cost alternative to accelerate the pace of conventional trial and error drug testing.

Tags

Equilibrium Binding ConstantBinding StrengthAssociation ConstantDissociation ConstantAffinityMolecular InteractionsLigand receptor InteractionsProtein ligand InteractionsKineticsThermodynamics

Aus Kapitel 3:

article

Now Playing

3.7 : The Equilibrium Binding Constant and Binding Strength

Energie und Katalyse

12.5K Ansichten

article

3.1 : Der erste Hauptsatz der Thermodynamik

Energie und Katalyse

5.2K Ansichten

article

3.2 : Der zweite Hauptsatz der Thermodynamik

Energie und Katalyse

4.8K Ansichten

article

3.3 : Enthalpie in der Zelle

Energie und Katalyse

5.6K Ansichten

article

3.4 : Entropie innerhalb der Zelle

Energie und Katalyse

10.1K Ansichten

article

3.5 : Eine Einführung in die Freie Energie

Energie und Katalyse

7.9K Ansichten

article

3.6 : Endergone und exergone Reaktionen in der Zelle

Energie und Katalyse

13.9K Ansichten

article

3.8 : Freie Energie und Gleichgewicht

Energie und Katalyse

5.9K Ansichten

article

3.9 : Ungleichgewicht in der Zelle

Energie und Katalyse

4.0K Ansichten

article

3.10 : Oxidation und Reduktion von organischen Molekülen

Energie und Katalyse

5.7K Ansichten

article

3.11 : Einführung in Enzyme

Energie und Katalyse

16.5K Ansichten

article

3.12 : Enzyme und Aktivierungsenergie

Energie und Katalyse

11.2K Ansichten

article

3.13 : Einführung in die Enzymkinetik

Energie und Katalyse

19.2K Ansichten

article

3.14 : Wechselzahl und katalytische Effizienz

Energie und Katalyse

9.7K Ansichten

article

3.15 : Katalytisch perfekte Enzyme

Energie und Katalyse

3.8K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten