Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
* Diese Autoren haben gleichermaßen beigetragen
Hier wird ein Protokoll zur Messung des Nicht-Häm-Eisengehalts in tierischen Geweben bereitgestellt, wobei ein einfacher, gut etablierter kolorimetrischer Assay verwendet wird, der in den meisten Labors leicht implementiert werden kann.
Eisen ist ein essentieller Mikronährstoff. Sowohl Eisenüberladung als auch -mangel sind für den Menschen sehr schädlich, und der Eisenspiegel im Gewebe ist fein reguliert. Die Verwendung experimenteller Tiermodelle für Eisenüberladung oder -mangel war hilfreich, um das Wissen über die Mechanismen zu erweitern, die an der systemischen und zellulären Regulation der Eisenhomöostase beteiligt sind. Die Messung des Gesamteisengehalts in tierischen Geweben wird üblicherweise mit Atomabsorptionsspektroskopie oder mit einem kolorimetrischen Assay durchgeführt, der auf der Reaktion von Nicht-Häm-Eisen mit einem Bathophenanthrolin-Reagenz basiert. Seit vielen Jahren wird der kolorimetrische Assay zur Messung des Nicht-Häm-Eisengehalts in einer Vielzahl von tierischen Geweben eingesetzt. Im Gegensatz zur Atomabsorptionsspektroskopie schließt es den Beitrag von Häm-Eisen aus, das aus Hämoglobin gewonnen wird, das in roten Blutkörperchen enthalten ist. Darüber hinaus erfordert es keine ausgefeilten analytischen Fähigkeiten oder sehr teure Ausrüstung und kann daher in den meisten Labors leicht implementiert werden. Schließlich kann der kolorimetrische Assay entweder küvettenbasiert oder an ein Mikroplattenformat angepasst sein, was einen höheren Probendurchsatz ermöglicht. Die vorliegende Arbeit liefert ein gut etabliertes Protokoll, das für den Nachweis von Veränderungen des Eisengehalts im Gewebe in einer Vielzahl von experimentellen Tiermodellen von Eisenüberladung oder Eisenmangel geeignet ist.
Eisen ist ein essentieller Mikronährstoff, der für die Funktion von Proteinen benötigt wird, die an entscheidenden biologischen Prozessen wie Sauerstofftransport, Energieproduktion oder DNA-Synthese beteiligt sind. Wichtig ist, dass sowohl Eisenüberschuss als auch Eisenmangel für die menschliche Gesundheit sehr schädlich sind und der Eisenspiegel im Gewebe fein reguliert ist. Abnorme Eisenaufnahme in der Nahrung, Eisenmangel, wiederholte Bluttransfusionen und chronische Entzündungen sind häufige Ursachen für Eisen-assoziierte Erkrankungen, von denen Milliarden von Menschen weltweit betroffen sind1,2,3.
Experimentelle Tiermodelle der Eisenüberladung oder -mangel waren maßgeblich daran beteiligt, unser Wissen über die Mechanismen der systemischen und zellulären Regulation der Eisenhomöostase zu erweitern4. Trotz der erheblichen Fortschritte, die in den letzten zwei Jahrzehnten erzielt wurden, sind viele wichtige Aspekte nach wie vor schwer fassbar. In den kommenden Jahren wird die genaue Messung des Gesamteisgehalts in tierischen Geweben ein entscheidender Schritt bleiben, um die Forschung auf dem Gebiet der Eisenbiologie voranzutreiben.
Die meisten Labore quantifizieren Gewebeeisen entweder mit Atomabsorptionsspektroskopie (AAS), Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) oder einem kolorimetrischen Assay, der auf der Reaktion von Nicht-Häm-Eisen mit einem Bathophenanthrolin-Reagenz basiert. Letzteres basiert auf der ursprünglichen Methode, die Torrance und Bothwell vor über 50 Jahren beschrieben haben5,6. Während später eine Variation dieser Methode entwickelt wurde, bei der Ferrozin als Alternative zu Bathophenanthrolin7 verwendet wurde, bleibt letzteres das am häufigsten zitierte chromogene Reagenz in der Literatur.
Die Methode der Wahl hängt oft vom verfügbaren Fachwissen und der Infrastruktur ab. Während AAS und ICP-MS empfindlicher sind, bleibt der kolorimetrische Assay weit verbreitet, da er die folgenden wichtigen Vorteile bietet: i) es schließt den Beitrag von Häm-Eisen aus, das aus Hämoglobin gewonnen wird, das in roten Blutkörperchen enthalten ist; ii) es erfordert keine ausgefeilten analytischen Fähigkeiten oder sehr teure Ausrüstung; und iii) der ursprüngliche Küvetten-basierte Assay kann an ein Mikroplattenformat angepasst werden, was einen höheren Probendurchsatz ermöglicht. Der kolorimetrische Ansatz, der in dieser Arbeit vorgestellt wird, wird routinemäßig verwendet, um Veränderungen des Gewebe-Nicht-Häm-Eisenspiegels in einer Vielzahl von experimentellen Tiermodellen von Eisenüberladung oder Eisenmangel, von Nagetieren bis hin zu Fischen und Fruchtfliegen, zu quantifizieren. Hier wird ein Protokoll für die Messung des Nicht-Häm-Eisengehalts in tierischem Gewebe bereitgestellt, wobei ein einfacher, gut etablierter, kolorimetrischer Assay verwendet wird, den die meisten Laboratorien leicht implementieren sollten.
C57BL/6 Mäuse wurden kommerziell gekauft und Hepcidin-Null (Hamp1−/−) Mäuse auf einem C57BL/6 Hintergrund8 waren ein freundliches Geschenk von Sophie Vaulont (Institut Cochin, Frankreich). Die Tiere wurden in der i3S-Tieranlage unter spezifischen pathogenfreien Bedingungen in einer temperatur- und lichtkontrollierten Umgebung untergebracht, mit freiem Zugang zu Standard-Nagetierfutter und Wasser. Der Europäische Wolfsbarsch (Dicentrarchus labrax) wurde von einer kommerziellen Fischfarm gekauft und in der ICBAS-Tieranlage in einer temperatur- und lichtkontrollierten Umgebung untergebracht und täglich ad libitum mit Standard-Wolfsbarschfutter gefüttert. Alle Verfahren mit Wirbeltieren wurden von der i3S-Tierethikkommission und der nationalen Behörde Direção-Geral de Alimentação e Veterinária (DGAV) genehmigt. Informationen über kommerzielle Reagenzien, Geräte und Tiere sind in der Materialtabelle aufgeführt.
1. Lösungsvorbereitung
HINWEIS: Behandeln und bereiten Sie alle Reagenzien und Lösungen mit eisenfreien Glaswaren oder Einwegplastikwaren vor. Lassen Sie metallische Labormaterialien (z. B. Edelstahlspatel) aufgrund des Risikos einer Eisenkontamination nicht mit Reagenzien oder Lösungen in Berührung kommen. Stellen Sie sicher, dass alle wiederverwendbaren Glaswaren eisenfrei sind. Waschen Sie die Materialien mit geeignetem Laborwaschmittel für 30-60 min, spülen Sie sie mit entionisiertem Wasser ab, tränken Sie sie über Nacht in einer 37% igen Salpetersäurelösung, die 1:3 mit deionisiertem Wasser verdünnt ist, spülen Sie sie erneut mit deionisiertem Wasser ab und lassen Sie sie trocknen.
2. Probentrocknung
3. Probe saurer Aufschluss
4. Farbentwicklung
5. Absorptionsmessung
6. Berechnung des Gewebeeisengehalts
Vergleich von Küvette zu 96-Well-Mikrotiterplatten
Die Messung von Gewebe-Nicht-Häm-Eisen durch Reaktion mit einem ursprünglich von Torrance und Bothwell5,6 beschriebenen Bathophenanthrol-Reagenz beruht auf der Verwendung eines Spektralphotometers zur Absorptionsmessung. Daher sind die in der Chromogenreaktion verwendeten Volumina mit der Größe einer normalen Spektralphotometerküvette kompatibel. Die vorliegende Arbeit beschreibt eine Me...
Ein Protokoll zur Messung des Nicht-Häm-Eisengehalts in tierischen Geweben wird unter Verwendung einer Anpassung des ursprünglich von Torrance und Bothwell beschriebenen bathophenanthrolinbasierten kolorimetrischen Assays bereitgestellt5,6. Die kritischen Schritte der Methode sind die Trocknung von Gewebeproben; Proteindenaturierung und Freisetzung von anorganischem Eisen durch saure Hydrolyse; Reduktion von Eisen (Fe3+) Eisen in den Eisenzustand (
Die Autoren haben keine Interessenkonflikte.
Diese Arbeit wurde von nationalen Fonds durch FCT-Fundação para a Ciência e a Tecnologia, I.P., im Rahmen des Projekts UIDB/04293/2020 finanziert.
Name | Company | Catalog Number | Comments |
96 well UV transparent plate | Sarstedt | 82.1581.001 | |
Analytical balance | Kern | ABJ 220-4M | |
Anhydrous sodium acetate | Merck | 106268 | |
Bathophenanthroline sulfonate (4,7-Diphenyl-1,10-phenantroline dissulfonic acid) | Sigma-Aldrich | B1375 | |
C57BL/6 mice (Mus musculus) | Charles River Laboratories | ||
Carbonyl iron powder, ≥99.5% | Sigma-Aldrich | 44890 | |
Disposable cuvettes in polymethyl methacrylate (PMMA) | VWR | 634-0678P | |
Double distilled, sterile water | B. Braun | 0082479E | |
Fluorescence microplate reader | BioTek Instruments | FLx800 | |
Hydrochloric acid, 37% | Sigma-Aldrich | 258148 | |
Microwave digestion oven and white teflon cups | CEM | MDS-2000 | |
Nitric acid | Fisher Scientific | 15687290 | |
Oven | Binder | ED115 | |
Rodent chow | Harlan Laboratories | 2014S | Teklad Global 14% Protein Rodent Maintenance Diet containing 175 mg/kg iron |
Sea bass (Dicentrarchus labrax) | Sonrionansa | ||
Sea bass feed | Skretting | L-2 Alterna 1P | |
Single beam UV-Vis spectrophotometer | Shimadzu | UV mini 1240 | |
Thioglycolic acid | Merck | 100700 | |
Trichloroacetic acid | Merck | 100807 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten