Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Hier beschreiben wir eine Methode zur bakteriellen Koexpression von differentiell markierten Proteinen unter Verwendung einer Reihe kompatibler Vektoren, gefolgt von den konventionellen Pulldown-Techniken zur Untersuchung von Proteinkomplexen, die sich in vitro nicht zusammensetzen können.

Zusammenfassung

Pulldown ist ein einfacher und weit verbreiteter Protein-Protein-Interaktions-Assay. Es hat jedoch Einschränkungen bei der Untersuchung von Proteinkomplexen, die sich in vitro nicht effektiv zusammensetzen. Solche Komplexe können eine kotranslationale Assemblierung und das Vorhandensein von molekularen Chaperonen erfordern; Entweder bilden sie stabile Oligomere, die in vitro nicht dissoziieren und reassoziieren können, oder sie sind ohne Bindungspartner instabil. Um diese Probleme zu überwinden, ist es möglich, eine Methode zu verwenden, die auf der bakteriellen Koexpression von differentiell markierten Proteinen unter Verwendung einer Reihe kompatibler Vektoren basiert, gefolgt von den herkömmlichen Pulldown-Techniken. Der Workflow ist im Vergleich zum herkömmlichen Pulldown zeiteffizienter, da ihm die zeitaufwändigen Schritte der getrennten Aufreinigung interagierender Proteine und ihrer anschließenden Inkubation fehlen. Ein weiterer Vorteil ist eine höhere Reproduzierbarkeit aufgrund einer deutlich geringeren Anzahl von Schritten und einer kürzeren Zeitspanne, in der Proteine, die in der In-vitro-Umgebung existieren, einer Proteolyse und Oxidation ausgesetzt sind. Die Methode wurde erfolgreich zur Untersuchung einer Reihe von Protein-Protein-Wechselwirkungen angewendet, wenn sich andere In-vitro-Techniken als ungeeignet erwiesen haben. Die Methode kann für die Chargenprüfung von Protein-Protein-Wechselwirkungen verwendet werden. Repräsentative Ergebnisse werden für Studien zu Wechselwirkungen zwischen BTB-Domäne und intrinsisch ungeordneten Proteinen sowie zu Heterodimeren von Zinkfinger-assoziierten Domänen gezeigt.

Einleitung

Konventioneller Pulldown wird häufig verwendet, um Protein-Protein-Wechselwirkungen zu untersuchen1. Gereinigte Proteine interagieren jedoch oft nicht effektiv in vitro2,3, und einige von ihnen sind ohne ihren Bindungspartner 4,5 unlöslich. Solche Proteine könnten eine co-translationale Assemblierung oder das Vorhandensein von molekularen Chaperonen 5,6,7,8,9 erfordern.

Protokoll

Die schematische Darstellung des Methodenworkflows ist in Abbildung 1 dargestellt.

1. Co-Transformation von E. coli

  1. Bereiten Sie Expressionsvektoren für Zielproteine mit Standard-Klonierungsmethoden vor.
    HINWEIS: In der Regel ist es ein guter Ausgangspunkt, konventionelle pGEX/pMAL-Vektoren zu verwenden, die ein Ampicillin-Resistenzgen und ColE1-Ursprung für die Expression von GST/MBP-markierten Proteinen und einen kompatiblen Vektor mit p15A- oder RSF-Ursprung und Kanamycin-Resistenz tragen, um 6xHis-markierte Proteine zu exprimieren, in einigen Fällen kombiniert mit Thio....

Ergebnisse

Die beschriebene Methode wurde routinemäßig mit vielen verschiedenen Zielen angewendet. Hier werden einige repräsentative Ergebnisse vorgestellt, die mit herkömmlichen Pulldown-Techniken wahrscheinlich nicht erzielt werden können. Die erste ist die Untersuchung der spezifischen ZAD-Dimerisierung (Zinc-finger-associated domain)11. ZADs bilden stabile und spezifische Dimere, wobei Heterodimere nur zwischen eng verwandten Domänen innerhalb paraloger Gruppen möglich sind. Die von diesen Domäne.......

Diskussion

Die beschriebene Methode ermöglicht die Untersuchung von Protein-Protein-Wechselwirkungen, die in vitro nicht effizient zusammengesetzt werden können und eine Koexpression erfordern. Die Methode ist einer der wenigen geeigneten Ansätze zur Untersuchung heterodimerisierender Proteine, die ebenfalls zur Homodimerisierung fähig sind, da solche Proteine, wenn sie getrennt gereinigt werden, stabile Homodimere bilden, die während des Experiments meistens nicht dissoziieren und reassoziierenkönn.......

Offenlegungen

Die Autoren erklären keine Interessenkonflikte.

Danksagungen

Diese Arbeit wurde durch die Projekte 19-74-30026 (Methodenentwicklung und -validierung) und 19-74-10099 (Protein-Protein-Interaktionsassays) der Russischen Wissenschaftsstiftung unterstützt. und vom Ministerium für Wissenschaft und Hochschulbildung der Russischen Föderation-Zuschuss 075-15-2019-1661 (Analyse repräsentativer Protein-Protein-Wechselwirkungen).

....

Materialien

NameCompanyCatalog NumberComments
8-ELEMENT probeSonics630-0586The high throughput 8-element sonicator probes
AgarAppliChemA0949
Amylose resinNew England BiolabsE8021Resin for purification of MBP-tagged proteins
AntibioticsAppliChemA4789 (kanamycin); A0839 (ampicillin)
Beta-mercaptoethanolAppliChemA1108
BL21(DE3) Novagen69450-M
CaCl2AppliChemA4689
CentrifugeEppendorf5415R (Z605212)
GlutathioneAppliChemA9782
Glutathione agarosePierce16100Resin for purification of GST-tagged proteins
GlycerolAppliChemA2926
HEPES AppliChemA3724
HisPur Ni-NTA Superflow AgaroseThermo Scientific25214Resin for purification of 6xHis-tagged proteins
ImidazoleAppliChemA1378
IPTGAppliChemA4773
KClAppliChemA2939
LBAppliChem414753
MaltoseAppliChemA3891
MOPSAppliChemA2947
NaClAppliChemA2942
NP40Roche11754599001
pACYCDuet-1Sigma-Aldrich71147Vector for co-expression of proteins with p15A replication origin
pCDFDuet-1Sigma-Aldrich71340Vector for co-expression of proteins with CloDF13 replication origin
PMSFAppliChemA0999
Protease Inhibitor Cocktail VIICalbiochem539138Protease Inhibitor Cocktail
pRSFDuet-1Sigma-Aldrich71341Vector for co-expression of proteins with RSF replication origin
SDS AppliChemA2263
Tris AppliChemA2264
VC505 sonicatorSonicsCV334Ultrasonic liquid processor
ZnCl2AppliChemA6285

Referenzen

  1. Louche, A., Salcedo, S. P., Bigot, S. Protein-protein interactions: Pulldown assays. Methods in Molecular Biology. 1615, 247-255 (2017).
  2. Rose, R. B., et al. Structural basis of dimerization, coactivator recognition ....

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

BiochemieHeft 190

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten