Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Hier beschreiben wir eine Methode zur bakteriellen Koexpression von differentiell markierten Proteinen unter Verwendung einer Reihe kompatibler Vektoren, gefolgt von den konventionellen Pulldown-Techniken zur Untersuchung von Proteinkomplexen, die sich in vitro nicht zusammensetzen können.
Pulldown ist ein einfacher und weit verbreiteter Protein-Protein-Interaktions-Assay. Es hat jedoch Einschränkungen bei der Untersuchung von Proteinkomplexen, die sich in vitro nicht effektiv zusammensetzen. Solche Komplexe können eine kotranslationale Assemblierung und das Vorhandensein von molekularen Chaperonen erfordern; Entweder bilden sie stabile Oligomere, die in vitro nicht dissoziieren und reassoziieren können, oder sie sind ohne Bindungspartner instabil. Um diese Probleme zu überwinden, ist es möglich, eine Methode zu verwenden, die auf der bakteriellen Koexpression von differentiell markierten Proteinen unter Verwendung einer Reihe kompatibler Vektoren basiert, gefolgt von den herkömmlichen Pulldown-Techniken. Der Workflow ist im Vergleich zum herkömmlichen Pulldown zeiteffizienter, da ihm die zeitaufwändigen Schritte der getrennten Aufreinigung interagierender Proteine und ihrer anschließenden Inkubation fehlen. Ein weiterer Vorteil ist eine höhere Reproduzierbarkeit aufgrund einer deutlich geringeren Anzahl von Schritten und einer kürzeren Zeitspanne, in der Proteine, die in der In-vitro-Umgebung existieren, einer Proteolyse und Oxidation ausgesetzt sind. Die Methode wurde erfolgreich zur Untersuchung einer Reihe von Protein-Protein-Wechselwirkungen angewendet, wenn sich andere In-vitro-Techniken als ungeeignet erwiesen haben. Die Methode kann für die Chargenprüfung von Protein-Protein-Wechselwirkungen verwendet werden. Repräsentative Ergebnisse werden für Studien zu Wechselwirkungen zwischen BTB-Domäne und intrinsisch ungeordneten Proteinen sowie zu Heterodimeren von Zinkfinger-assoziierten Domänen gezeigt.
Konventioneller Pulldown wird häufig verwendet, um Protein-Protein-Wechselwirkungen zu untersuchen1. Gereinigte Proteine interagieren jedoch oft nicht effektiv in vitro2,3, und einige von ihnen sind ohne ihren Bindungspartner 4,5 unlöslich. Solche Proteine könnten eine co-translationale Assemblierung oder das Vorhandensein von molekularen Chaperonen 5,6,7,8,9 erfordern.
Die schematische Darstellung des Methodenworkflows ist in Abbildung 1 dargestellt.
1. Co-Transformation von E. coli
Die beschriebene Methode wurde routinemäßig mit vielen verschiedenen Zielen angewendet. Hier werden einige repräsentative Ergebnisse vorgestellt, die mit herkömmlichen Pulldown-Techniken wahrscheinlich nicht erzielt werden können. Die erste ist die Untersuchung der spezifischen ZAD-Dimerisierung (Zinc-finger-associated domain)11. ZADs bilden stabile und spezifische Dimere, wobei Heterodimere nur zwischen eng verwandten Domänen innerhalb paraloger Gruppen möglich sind. Die von diesen Domäne.......
Die beschriebene Methode ermöglicht die Untersuchung von Protein-Protein-Wechselwirkungen, die in vitro nicht effizient zusammengesetzt werden können und eine Koexpression erfordern. Die Methode ist einer der wenigen geeigneten Ansätze zur Untersuchung heterodimerisierender Proteine, die ebenfalls zur Homodimerisierung fähig sind, da solche Proteine, wenn sie getrennt gereinigt werden, stabile Homodimere bilden, die während des Experiments meistens nicht dissoziieren und reassoziierenkönn.......
Die Autoren erklären keine Interessenkonflikte.
Diese Arbeit wurde durch die Projekte 19-74-30026 (Methodenentwicklung und -validierung) und 19-74-10099 (Protein-Protein-Interaktionsassays) der Russischen Wissenschaftsstiftung unterstützt. und vom Ministerium für Wissenschaft und Hochschulbildung der Russischen Föderation-Zuschuss 075-15-2019-1661 (Analyse repräsentativer Protein-Protein-Wechselwirkungen).
....Name | Company | Catalog Number | Comments |
8-ELEMENT probe | Sonics | 630-0586 | The high throughput 8-element sonicator probes |
Agar | AppliChem | A0949 | |
Amylose resin | New England Biolabs | E8021 | Resin for purification of MBP-tagged proteins |
Antibiotics | AppliChem | A4789 (kanamycin); A0839 (ampicillin) | |
Beta-mercaptoethanol | AppliChem | A1108 | |
BL21(DE3) | Novagen | 69450-M | |
CaCl2 | AppliChem | A4689 | |
Centrifuge | Eppendorf | 5415R (Z605212) | |
Glutathione | AppliChem | A9782 | |
Glutathione agarose | Pierce | 16100 | Resin for purification of GST-tagged proteins |
Glycerol | AppliChem | A2926 | |
HEPES | AppliChem | A3724 | |
HisPur Ni-NTA Superflow Agarose | Thermo Scientific | 25214 | Resin for purification of 6xHis-tagged proteins |
Imidazole | AppliChem | A1378 | |
IPTG | AppliChem | A4773 | |
KCl | AppliChem | A2939 | |
LB | AppliChem | 414753 | |
Maltose | AppliChem | A3891 | |
MOPS | AppliChem | A2947 | |
NaCl | AppliChem | A2942 | |
NP40 | Roche | 11754599001 | |
pACYCDuet-1 | Sigma-Aldrich | 71147 | Vector for co-expression of proteins with p15A replication origin |
pCDFDuet-1 | Sigma-Aldrich | 71340 | Vector for co-expression of proteins with CloDF13 replication origin |
PMSF | AppliChem | A0999 | |
Protease Inhibitor Cocktail VII | Calbiochem | 539138 | Protease Inhibitor Cocktail |
pRSFDuet-1 | Sigma-Aldrich | 71341 | Vector for co-expression of proteins with RSF replication origin |
SDS | AppliChem | A2263 | |
Tris | AppliChem | A2264 | |
VC505 sonicator | Sonics | CV334 | Ultrasonic liquid processor |
ZnCl2 | AppliChem | A6285 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten