A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present a method for the generation and characterization of oral mucosal organoid cultures derived from the tongue epithelium of adult mice.
The mucous lining covering the inside of our mouth, the oral mucosa, is a highly compartmentalized tissue and can be subdivided into the buccal mucosa, gingiva, lips, palate, and tongue. Its uppermost layer, the oral epithelium, is maintained by adult stem cells throughout life. Proliferation and differentiation of adult epithelial stem cells have been intensively studied using in vivo mouse models as well as two-dimensional (2D) feeder-cell based in vitro models. Complementary to these methods is organoid technology, where adult stem cells are embedded into an extracellular matrix (ECM)-rich hydrogel and provided with a culture medium containing a defined cocktail of growth factors. Under these conditions, adult stem cells proliferate and spontaneously form three-dimensional (3D) cell clusters, the so-called organoids. Organoid cultures were initially established from murine small intestinal epithelial stem cells. However, the method has since been adapted for other epithelial stem cell types. Here, we describe a protocol for the generation and characterization of murine oral mucosal organoid cultures. Primary epithelial cells are isolated from murine tongue tissue, embedded into an ECM hydrogel, and cultured in a medium containing: epidermal growth factor (EGF), R-spondin, and fibroblast growth factor (FGF) 10. Within 7 to 14 days of initial seeding, the resulting organoids can be passaged for further expansion and cryopreservation. We additionally present strategies for the characterization of established organoid cultures via 3D whole-mount imaging and gene-expression analysis. This protocol may serve as a tool to investigate oral epithelial stem cell behavior ex vivo in a reductionist manner.
The oral mucosa is the mucous lining covering the inside of our mouth. It functions as the entrance of the alimentary tract and is involved in the initiation of the digestive process1,2. In addition, the oral mucosa acts as our body's barrier to the outer environment providing protection from physical, chemical and biological insults1. Based on the function and histology, the oral mucosa in mammals can be divided into three types: masticatory mucosa (including the hard palate and gingiva), the lining mucosa (functioning as the surface of the soft palate, the ventral surface of the t....
All methods described here were performed in compliance with European Union and German legislation on animal experimentation.
NOTE: Prepare working place, including sterile surgical instruments (fine forceps, fine scissors, and scalpels) and Petri dishes filled with cold PBSO. Thaw BME overnight and keep it at 4 °C or on ice until usage. Pre-warm cell culture plates in an incubator overnight before starting the cell isolation. All materials are provided in the Table of Materi.......
This protocol describes the separation of the tongue epithelium from the underlying lamina propria and muscle using an enzymatic cocktail (Figure 1). The separated epithelium can further be used for organoid generation as well as harvested for different types of gene and protein analyses. Likewise, the digested layer of lamina propria and muscle may be used for procedures of choice.
For organoid cultures, the tongue epithelium is further digested into small clumps.......
Tissue digestion
The collagenase digestion helps in separating the epithelium from the underlying lamina propria and muscle tissue. This step allows for a better comparison of the primary tissue with the subsequently generated oral mucosal organoids. As overdigestion with enzymes impacts the organoid-forming capacity of the adult epithelial stem cells, we advise to perform the collagenase incubation for no longer than 1 h and the trypsin digestion no longer than 30 min. Upon collagenase digestion, .......
The authors would like to thank Sabine Kranz for assistance. We would like to thank the Core Unit for Confocal Microscopy and Flow Cytometry-based Cell Sorting of the IZKF Würzburg for supporting this study. This work was funded by a grant from the German Cancer Aid (via IZKF/MSNZ Würzburg to K.K.).
....Name | Company | Catalog Number | Comments |
Media & Media Components | |||
Advanced Dulbecco’s Modified Eagle Medium (DMEM)/F12 | Thermo Fisher Scientific | 12634-028 | |
B27 Supplement | Thermo Fisher Scientific | 17504-044 | |
GlutaMAX-I (100x) | Thermo Fisher Scientific | 35050-038 | |
HEPES | Thermo Fisher Scientific | 15630-056 | |
N-acetyl-L-cysteine | Sigma Aldrich | A9165 | |
Nicotinamide | Sigma Aldrich | N0636 | |
Penicillin/Streptomycin | Thermo Fisher Scientific | 15140-122 | |
Primocin | Invivogen | ant-pm1 | |
RSPO3-Fc fusion protein conditioned medium | U-Protein Express BV | R001 | |
Recombinant human EGF | Preprotech | AF-100-15 | |
Recombinant human FGF-10 | Preprotech | 100-26 | |
ROCK (Rho kinase) inhibitor Y-27632 dihydrochloride | Hölzel Biotech | M1817 | |
Antibodies | |||
Keratin-14 Polyclonal Antibody 100µl | Biozol | BLD-905301 | |
E-Cadherin Antibody | Bio-Techne | AF748 | |
Purified Mouse Anti-Ki-67 Clone B56 (0.1 mg) | BD Bioscience | 556003 | |
ALEXA FLUOR 594 Donkey Anti Mouse | Thermo Fisher Scientific | A21203 | |
ALEXA FLUOR 647 Donkey Anti Rabbit | Thermo Fisher Scientific | A31573 | |
ALEXA FLUOR 488 Donkey Anti Goat | Thermo Fisher Scientific | A110555 | |
Reagents / Chemicals | |||
BME Type 2, RGF Cultrex Pathclear | Bio-Techne | 3533-005-02 | |
Dimethyl sulfoxide (DMSO) | Sigma Aldrich | 34943-1L-M | |
Collagenase A | Roche | 10103578001 | |
Donkey Serum | Sigma Aldrich | S30-100ML | |
Phosphate Buffered Saline (PBS) | Thermo Fisher Scientific | 100-100-15 | |
EDTA | Sigma Aldrich | 221465-25G | |
Ethanol, denatured (96 %) | Carl Roth | T171.3 | |
Formalin Solution, neutral buffered, 10% | Sigma Aldrich | HT501128-4L | |
TritonX-100 | Sigma Aldrich | X100-500ML | |
Tween-20 | Sigma Aldrich | P1379-500ML | |
TrypLE Express Enzyme (1×), phenol red | Thermo Fisher Scientific | 12605-010 | |
Xylene | Sigma Aldrich | 534056-500ML | |
Equipment and Others | |||
Cell culture 12-Well Multiwell Plates | Greiner BioOne | 392-0047 | |
Cell Strainer: 100 µm | VWR | 732-2759 | |
Cover Slips | VWR | 631-1569P | |
Glass Bottom Microplates VE=10 4580 | Corning | 13539050 | |
Objective Slides: Superfrost Plus | VWR | 631-0108P |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved