Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis. C57BL/6 mice are immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 (MOG35-55), resulting in an ascending flaccid paralysis caused by autoreactive immune cells in the central nervous system. Protocols for disease induction and monitoring will be discussed.
Brain microvascular endothelial cells (BMEC) are interconnected by specific junctional proteins forming a highly regulated barrier separating blood and the central nervous system (CNS), the so-called blood-brain-barrier (BBB). The isolation of primary murine brain microvascular endothelial cells, as discussed in this protocol, enables detailed in vitro studies of the BBB.
To address mechanisms of demyelination and neuronal apoptosis in cortical lesions of inflammatory demyelinating disorders, different animal models are used. We here describe an ex vivo approach by using oligodendrocyte-specific CD8+ T-cells on brain slices, resulting in oligodendroglial and neuronal death. Potential applications and limitations of the model are discussed.
This article reports the development of a neuro-rehabilitation approach, "constraint-induced sound therapy (CIST)" for sudden sensorineural hearing loss. The aim of CIST is to prevent maladaptive cortical reorganization by using an enriched acoustic environment. CIST represents a safe, easy, inexpensive, and effective approach to treat sudden sensorineural hearing loss.
Here, we describe an in vitro murine model of the blood-brain barrier that makes use of impedance cell spectroscopy, with a focus on the consequences on endothelial cell integrity and permeability upon interaction with activated T cells.
We present a software solution for semi-automated tracking of relative protein concentration along the length of dynamic cellular protrusions.
Microvascular endothelial cells of skeletal muscles (MMEC) shape the inner wall of muscle capillaries and regulate both, exchange of fluids/molecules and migration of (immune) cells between muscle tissue and blood. Isolation of primary murine MMEC, as described here, enables comprehensive in vitro investigations of the "myovascular unit".
This technical report describes a variation of the modified Bergström technique for the biopsy of the musculus tibialis anterior that limits fiber damage.
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados