Iniciar sesión

Newton's law of gravitation describes the gravitational force between any two point masses. However, for extended spherical objects like the Earth, the Moon, and other planets, the law holds with an assumption that masses of spherical objects are concentrated at their respective centers.

This assumption can be proved easily by showing that the expression for gravitational potential energy between a hollow sphere of mass (M) and a point mass (m) is the same as it would be for a pair of extended spherical solid objects.

Consider a tiny ring of width Rdϕ and mass dM on the surface of a spherical hollow sphere at a distance s from the point mass as shown in Figure 1(a).

Figure1

The gravitational potential energy between the ring and the point mass (m) is expressed as:

Equation1

The ratio of the ring's mass to the entire shell's mass is equal to the ratio of the ring's area to the shell's area. Therefore, on simplification, the ring's mass can be expressed as:

Equation2

Now, the square of distance (s) can be expressed as the sum of squares of the triangle's other two sides, as seen in Figure 1(b).

Simplifying further and taking differentials on either side,

Equation3

Considering the entire shell, s can vary between r R and r + R, as seen in Figure 1(c).

Therefore, substituting dM and s in the potential energy equation and integrating within the limits of rR to r + R, the relation obtained is the potential energy between point masses m and M at a distance r.

Equation4

Therefore, the assumption is proven.

Since force is a derivative of potential energy, the assumption holds for gravitational forces between two spherically solid objects like the Earth and the Moon. Therefore, Newton's law of gravitation can be used to determine the gravitational force between the Earth and the Moon, and the Earth and the Sun.

Tags
GravityNewton s Law Of GravitationGravitational ForcePoint MassesSpherical ObjectsGravitational Potential EnergyHollow SphereMass DistributionDistanceIntegrationGravitational ForcesEarthMoonSun

Del capítulo 14:

article

Now Playing

14.4 : Gravedad entre cuerpos esféricos

Gravitación

8.0K Vistas

article

14.1 : Gravitación

Gravitación

6.0K Vistas

article

14.2 : Ley de la gravitación de Newton

Gravitación

9.4K Vistas

article

14.3 : Gravitación entre masas esféricamente simétricas

Gravitación

787 Vistas

article

14.5 : Coordenadas de masa reducida: problema aislado de dos cuerpos

Gravitación

1.1K Vistas

article

14.6 : Aceleración debida a la gravedad en la Tierra

Gravitación

10.3K Vistas

article

14.7 : Aceleración debida a la gravedad en otros planetas

Gravitación

4.0K Vistas

article

14.8 : Peso aparente y la rotación de la Tierra

Gravitación

3.5K Vistas

article

14.9 : Variación en la aceleración debida a la gravedad cerca de la superficie terrestre

Gravitación

2.3K Vistas

article

14.10 : Energía potencial debida a la gravitación

Gravitación

2.7K Vistas

article

14.11 : El principio de superposición y el campo gravitatorio

Gravitación

1.1K Vistas

article

14.12 : Velocidad de escape

Gravitación

2.5K Vistas

article

14.13 : Órbitas circulares y velocidad crítica para satélites

Gravitación

2.8K Vistas

article

14.14 : Energía de un satélite en una órbita circular

Gravitación

2.1K Vistas

article

14.15 : Primera ley de Kepler sobre el movimiento planetario

Gravitación

3.7K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados