JoVE Logo

Войдите в систему

14.4 : Gravity between Spherical Bodies

Newton's law of gravitation describes the gravitational force between any two point masses. However, for extended spherical objects like the Earth, the Moon, and other planets, the law holds with an assumption that masses of spherical objects are concentrated at their respective centers.

This assumption can be proved easily by showing that the expression for gravitational potential energy between a hollow sphere of mass (M) and a point mass (m) is the same as it would be for a pair of extended spherical solid objects.

Consider a tiny ring of width Rdϕ  and mass dM on the surface of a spherical hollow sphere at a distance s from the point mass as shown in Figure 1(a).

Physics sphere mass diagram; equations: r, R, M; concepts: center of mass, angle ϕ.

The gravitational potential energy between the ring and the point mass (m)  is expressed as:

Thermodynamics equation \(dU = -\frac{GdM}{s}\), energy calculation relation, formula.

The ratio of the ring's mass to the entire shell's mass is equal to the ratio of the ring's area to the shell's area. Therefore, on simplification, the ring's mass can be expressed as:

dM=(1/2)Msinφdφ; dynamic equilibrium equation; mathematical formula; physics concept

Now, the square of distance (s) can be expressed as the sum of squares of the triangle's other two sides, as seen in Figure 1(b).

Simplifying further and taking differentials on either side,

Dynamic equilibrium equation \(2s\, ds = 2rR \sin\phi\,d\phi\); mathematical formula.

Considering the entire shell, s can vary between r R and r + R, as seen in Figure 1(c).

Therefore, substituting dM and s in the potential energy equation and integrating within the limits of rR to r + R, the relation obtained is the potential energy between point masses m and M at a distance r.

Gravitational potential energy equation, U=-GMm/r, formula for educational reference.

Therefore, the assumption is proven.

Since force is a derivative of potential energy, the assumption holds for gravitational forces between two spherically solid objects like the Earth and the Moon. Therefore, Newton's law of gravitation can be used to determine the gravitational force between the Earth and the Moon, and the Earth and the Sun.

Теги

GravityNewton s Law Of GravitationGravitational ForcePoint MassesSpherical ObjectsGravitational Potential EnergyHollow SphereMass DistributionDistanceIntegrationGravitational ForcesEarthMoonSun

Из главы 14:

article

Now Playing

14.4 : Gravity between Spherical Bodies

Gravitation

8.3K Просмотры

article

14.1 : Тяготение

Gravitation

6.2K Просмотры

article

14.2 : Закон всемирного тяготения Ньютона

Gravitation

12.4K Просмотры

article

14.3 : Гравитация между сферически симметричными массами

Gravitation

846 Просмотры

article

14.5 : Координаты приведенной массы: изолированная задача двух тел

Gravitation

1.2K Просмотры

article

14.6 : Ускорение под действием силы тяжести на Земле

Gravitation

10.5K Просмотры

article

14.7 : Ускорение из-за гравитации на других планетах

Gravitation

4.1K Просмотры

article

14.8 : Кажущийся вес и вращение Земли

Gravitation

3.5K Просмотры

article

14.9 : Изменение ускорения из-за гравитации у поверхности Земли

Gravitation

2.4K Просмотры

article

14.10 : Потенциальная энергия под действием гравитации

Gravitation

5.4K Просмотры

article

14.11 : Принцип суперпозиции и гравитационное поле

Gravitation

1.3K Просмотры

article

14.12 : Вторая космическая скорость

Gravitation

5.6K Просмотры

article

14.13 : Круговые орбиты и критическая скорость для спутников

Gravitation

2.9K Просмотры

article

14.14 : Энергия спутника на круговой орбите

Gravitation

2.2K Просмотры

article

14.15 : Первый закон движения планет Кеплера

Gravitation

3.9K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены