JoVE Logo

Zaloguj się

14.4 : Gravity between Spherical Bodies

Newton's law of gravitation describes the gravitational force between any two point masses. However, for extended spherical objects like the Earth, the Moon, and other planets, the law holds with an assumption that masses of spherical objects are concentrated at their respective centers.

This assumption can be proved easily by showing that the expression for gravitational potential energy between a hollow sphere of mass (M) and a point mass (m) is the same as it would be for a pair of extended spherical solid objects.

Consider a tiny ring of width Rdϕ and mass dM on the surface of a spherical hollow sphere at a distance s from the point mass as shown in Figure 1(a).

Figure1

The gravitational potential energy between the ring and the point mass (m) is expressed as:

Equation1

The ratio of the ring's mass to the entire shell's mass is equal to the ratio of the ring's area to the shell's area. Therefore, on simplification, the ring's mass can be expressed as:

Equation2

Now, the square of distance (s) can be expressed as the sum of squares of the triangle's other two sides, as seen in Figure 1(b).

Simplifying further and taking differentials on either side,

Equation3

Considering the entire shell, s can vary between r R and r + R, as seen in Figure 1(c).

Therefore, substituting dM and s in the potential energy equation and integrating within the limits of rR to r + R, the relation obtained is the potential energy between point masses m and M at a distance r.

Equation4

Therefore, the assumption is proven.

Since force is a derivative of potential energy, the assumption holds for gravitational forces between two spherically solid objects like the Earth and the Moon. Therefore, Newton's law of gravitation can be used to determine the gravitational force between the Earth and the Moon, and the Earth and the Sun.

Tagi

GravityNewton s Law Of GravitationGravitational ForcePoint MassesSpherical ObjectsGravitational Potential EnergyHollow SphereMass DistributionDistanceIntegrationGravitational ForcesEarthMoonSun

Z rozdziału 14:

article

Now Playing

14.4 : Gravity between Spherical Bodies

Gravitation

8.1K Wyświetleń

article

14.1 : Grawitacja

Gravitation

6.0K Wyświetleń

article

14.2 : Prawo grawitacji Newtona

Gravitation

12.1K Wyświetleń

article

14.3 : Grawitacja pomiędzy sferycznie symetrycznymi masami

Gravitation

814 Wyświetleń

article

14.5 : Zmniejszone współrzędne masy: izolowany problem dwóch ciał

Gravitation

1.2K Wyświetleń

article

14.6 : Przyspieszenie grawitacyjne na Ziemi

Gravitation

10.4K Wyświetleń

article

14.7 : Przyspieszenie grawitacyjne na innych planetach

Gravitation

4.0K Wyświetleń

article

14.8 : Ciężar pozorny i ruch obrotowy Ziemi

Gravitation

3.5K Wyświetleń

article

14.9 : Zmiany przyspieszenia spowodowane grawitacją w pobliżu powierzchni Ziemi

Gravitation

2.3K Wyświetleń

article

14.10 : Energia potencjalna spowodowana grawitacją

Gravitation

5.3K Wyświetleń

article

14.11 : Zasada superpozycji i pola grawitacyjnego

Gravitation

1.3K Wyświetleń

article

14.12 : Prędkość ucieczki

Gravitation

5.4K Wyświetleń

article

14.13 : Orbity kołowe i prędkość krytyczna dla satelitów

Gravitation

2.8K Wyświetleń

article

14.14 : Energia satelity na orbicie kołowej

Gravitation

2.1K Wyświetleń

article

14.15 : Pierwsza zasada ruchu planet Keplera

Gravitation

3.8K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone