JoVE Logo

Accedi

Newton's law of gravitation describes the gravitational force between any two point masses. However, for extended spherical objects like the Earth, the Moon, and other planets, the law holds with an assumption that masses of spherical objects are concentrated at their respective centers.

This assumption can be proved easily by showing that the expression for gravitational potential energy between a hollow sphere of mass (M) and a point mass (m) is the same as it would be for a pair of extended spherical solid objects.

Consider a tiny ring of width Rdϕ and mass dM on the surface of a spherical hollow sphere at a distance s from the point mass as shown in Figure 1(a).

Figure1

The gravitational potential energy between the ring and the point mass (m) is expressed as:

Equation1

The ratio of the ring's mass to the entire shell's mass is equal to the ratio of the ring's area to the shell's area. Therefore, on simplification, the ring's mass can be expressed as:

Equation2

Now, the square of distance (s) can be expressed as the sum of squares of the triangle's other two sides, as seen in Figure 1(b).

Simplifying further and taking differentials on either side,

Equation3

Considering the entire shell, s can vary between r R and r + R, as seen in Figure 1(c).

Therefore, substituting dM and s in the potential energy equation and integrating within the limits of rR to r + R, the relation obtained is the potential energy between point masses m and M at a distance r.

Equation4

Therefore, the assumption is proven.

Since force is a derivative of potential energy, the assumption holds for gravitational forces between two spherically solid objects like the Earth and the Moon. Therefore, Newton's law of gravitation can be used to determine the gravitational force between the Earth and the Moon, and the Earth and the Sun.

Tags

GravityNewton s Law Of GravitationGravitational ForcePoint MassesSpherical ObjectsGravitational Potential EnergyHollow SphereMass DistributionDistanceIntegrationGravitational ForcesEarthMoonSun

Dal capitolo 14:

article

Now Playing

14.4 : Gravity between Spherical Bodies

Gravitation

8.1K Visualizzazioni

article

14.1 : Gravitazione

Gravitation

6.0K Visualizzazioni

article

14.2 : Legge di Gravitazione di Newton

Gravitation

11.5K Visualizzazioni

article

14.3 : Gravitazione tra masse sfericamente simmetriche

Gravitation

801 Visualizzazioni

article

14.5 : Coordinate di massa ridotte: problema isolato a due corpi

Gravitation

1.2K Visualizzazioni

article

14.6 : Accelerazione dovuta alla gravità sulla Terra

Gravitation

10.3K Visualizzazioni

article

14.7 : Accelerazione dovuta alla gravità su altri pianeti

Gravitation

4.0K Visualizzazioni

article

14.8 : Peso apparente e rotazione terrestre

Gravitation

3.5K Visualizzazioni

article

14.9 : Variazione dell'accelerazione dovuta alla gravità vicino alla superficie terrestre

Gravitation

2.3K Visualizzazioni

article

14.10 : Energia potenziale dovuta alla gravitazione

Gravitation

4.8K Visualizzazioni

article

14.11 : Il principio di sovrapposizione e il campo gravitazionale

Gravitation

1.2K Visualizzazioni

article

14.12 : Velocità di fuga

Gravitation

4.8K Visualizzazioni

article

14.13 : Orbite circolari e velocità critica per i satelliti

Gravitation

2.8K Visualizzazioni

article

14.14 : Energia di un satellite in orbita circolare

Gravitation

2.1K Visualizzazioni

article

14.15 : La prima legge del moto planetario di Keplero

Gravitation

3.8K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati