Anmelden

Newton's law of gravitation describes the gravitational force between any two point masses. However, for extended spherical objects like the Earth, the Moon, and other planets, the law holds with an assumption that masses of spherical objects are concentrated at their respective centers.

This assumption can be proved easily by showing that the expression for gravitational potential energy between a hollow sphere of mass (M) and a point mass (m) is the same as it would be for a pair of extended spherical solid objects.

Consider a tiny ring of width Rdϕ and mass dM on the surface of a spherical hollow sphere at a distance s from the point mass as shown in Figure 1(a).

Figure1

The gravitational potential energy between the ring and the point mass (m) is expressed as:

Equation1

The ratio of the ring's mass to the entire shell's mass is equal to the ratio of the ring's area to the shell's area. Therefore, on simplification, the ring's mass can be expressed as:

Equation2

Now, the square of distance (s) can be expressed as the sum of squares of the triangle's other two sides, as seen in Figure 1(b).

Simplifying further and taking differentials on either side,

Equation3

Considering the entire shell, s can vary between r R and r + R, as seen in Figure 1(c).

Therefore, substituting dM and s in the potential energy equation and integrating within the limits of rR to r + R, the relation obtained is the potential energy between point masses m and M at a distance r.

Equation4

Therefore, the assumption is proven.

Since force is a derivative of potential energy, the assumption holds for gravitational forces between two spherically solid objects like the Earth and the Moon. Therefore, Newton's law of gravitation can be used to determine the gravitational force between the Earth and the Moon, and the Earth and the Sun.

Tags
GravityNewton s Law Of GravitationGravitational ForcePoint MassesSpherical ObjectsGravitational Potential EnergyHollow SphereMass DistributionDistanceIntegrationGravitational ForcesEarthMoonSun

Aus Kapitel 14:

article

Now Playing

14.4 : Gravity between Spherical Bodies

Gravitation

8.0K Ansichten

article

14.1 : Gravitation

Gravitation

6.0K Ansichten

article

14.2 : Newtons Gesetz der Gravitation

Gravitation

9.4K Ansichten

article

14.3 : Gravitation zwischen kugelsymmetrischen Massen

Gravitation

787 Ansichten

article

14.5 : Reduzierte Massenkoordinaten: Isoliertes Zweikörperproblem

Gravitation

1.1K Ansichten

article

14.6 : Beschleunigung durch Schwerkraft auf der Erde

Gravitation

10.3K Ansichten

article

14.7 : Beschleunigung durch Schwerkraft auf anderen Planeten

Gravitation

4.0K Ansichten

article

14.8 : Das scheinbare Gewicht und die Erdrotation

Gravitation

3.5K Ansichten

article

14.9 : Variation der Beschleunigung aufgrund der Schwerkraft in der Nähe der Erdoberfläche

Gravitation

2.3K Ansichten

article

14.10 : Potentielle Energie durch Gravitation

Gravitation

2.7K Ansichten

article

14.11 : Das Prinzip der Überlagerung und des Gravitationsfeldes

Gravitation

1.1K Ansichten

article

14.12 : Fluchtgeschwindigkeit

Gravitation

2.5K Ansichten

article

14.13 : Zirkuläre Umlaufbahnen und kritische Geschwindigkeit für Satelliten

Gravitation

2.8K Ansichten

article

14.14 : Energie eines Satelliten in einer kreisförmigen Umlaufbahn

Gravitation

2.1K Ansichten

article

14.15 : Keplers erstes Gesetz der Planetenbewegung

Gravitation

3.7K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten