S'identifier

Newton's law of gravitation describes the gravitational force between any two point masses. However, for extended spherical objects like the Earth, the Moon, and other planets, the law holds with an assumption that masses of spherical objects are concentrated at their respective centers.

This assumption can be proved easily by showing that the expression for gravitational potential energy between a hollow sphere of mass (M) and a point mass (m) is the same as it would be for a pair of extended spherical solid objects.

Consider a tiny ring of width Rdϕ and mass dM on the surface of a spherical hollow sphere at a distance s from the point mass as shown in Figure 1(a).

Figure1

The gravitational potential energy between the ring and the point mass (m) is expressed as:

Equation1

The ratio of the ring's mass to the entire shell's mass is equal to the ratio of the ring's area to the shell's area. Therefore, on simplification, the ring's mass can be expressed as:

Equation2

Now, the square of distance (s) can be expressed as the sum of squares of the triangle's other two sides, as seen in Figure 1(b).

Simplifying further and taking differentials on either side,

Equation3

Considering the entire shell, s can vary between r R and r + R, as seen in Figure 1(c).

Therefore, substituting dM and s in the potential energy equation and integrating within the limits of rR to r + R, the relation obtained is the potential energy between point masses m and M at a distance r.

Equation4

Therefore, the assumption is proven.

Since force is a derivative of potential energy, the assumption holds for gravitational forces between two spherically solid objects like the Earth and the Moon. Therefore, Newton's law of gravitation can be used to determine the gravitational force between the Earth and the Moon, and the Earth and the Sun.

Tags
GravityNewton s Law Of GravitationGravitational ForcePoint MassesSpherical ObjectsGravitational Potential EnergyHollow SphereMass DistributionDistanceIntegrationGravitational ForcesEarthMoonSun

Du chapitre 14:

article

Now Playing

14.4 : Gravity between Spherical Bodies

Gravitation

8.0K Vues

article

14.1 : Gravitation

Gravitation

6.0K Vues

article

14.2 : La loi universelle de la gravitation

Gravitation

9.4K Vues

article

14.3 : Gravitation entre des masses sphériquement symétriques

Gravitation

787 Vues

article

14.5 : Coordonnées de masse réduites : problème à deux corps isolés

Gravitation

1.1K Vues

article

14.6 : La pesanteur terrestre

Gravitation

10.3K Vues

article

14.7 : La pesanteur sur d'autres planètes

Gravitation

4.0K Vues

article

14.8 : Rotation de la Terre et poids apparent

Gravitation

3.5K Vues

article

14.9 : Variation de la pesanteur près de la surface de la terre

Gravitation

2.3K Vues

article

14.10 : Énergie potentielle gravitationnelle

Gravitation

2.7K Vues

article

14.11 : Le principe de superposition et le champ gravitationnel

Gravitation

1.1K Vues

article

14.12 : Vitesse de libération

Gravitation

2.5K Vues

article

14.13 : Orbites circulaires et vitesse critique des satellites

Gravitation

2.8K Vues

article

14.14 : Énergie d'un satellite en orbite circulaire

Gravitation

2.1K Vues

article

14.15 : La première loi de Kepler sur le mouvement des planètes

Gravitation

3.7K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.